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than does a Gaussian noise of equal power. The increased
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" This dissertation addresses the problem of detecting known, discrete-

time signals in additive non-Gaussian noise. The case of statistically
independent samples is emphasized. After a brief introduction to the de-
tection problem, the characteristics and sources of impulsive noise are
discussed. Several models for impulsive noise are then presented. The
camplexity of these models and the need for simple density functions to
approximate the first order characteristics of impulsive noise justify % N
consideration of three systems of densities. These three systems are:( v
a generalized Gaussian noise, the Johnson Su System, and a mixture model.
These are used throughout this dissertation /to provide examples.

In many detection problems it may only be possible to define a class
of probability densities which contains the actual noise density. In such
cases minimax detectors may be used to gquarantee a lower bound on detector

performance for the entire class. The minimax detector is the optimum

detector for the worst case density. It is shown that the worst case

1 density, in terms of minimizing the asymptotic probability of detecting

#. a signal, is that density which minimizes Fisher's Information over the

= entire class. Several classes of densities are considered and conditions
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increased structure of the impulsive noise may be exploited to increase
detector performance over that possible for Gaussian noise. Non-linear
processing, however, is required.

An adaptive detector which uses the Johnson System as a noise
model is then presented. After a study of different measures of tail
behavior, a scheme to adapt a detector utilizing quantiles to measure
the tail behavior of the first order density function of the noise is
developed. Similation results are presented which indicate that this
detector will perform well over a large variety of background noises.
These simulations also support the statement that non-Gaussian noise,
with large values for Fisher's Information, provides a better environ-
ment for detection than does Gaussian noise.

Suggestions for continuing this research are also included.
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Chagter 1

INTRODUCTION

This dissertation addresses the problem of detecting known,
discrete-time signals in additive non-Gaussian noise. This
problem may arise in communications, radar, sonar, and other
situations where the dominant noise may be impulsive in nature.
For example, low frequency radio channels are plagued by highly
impulsive lightning strokes [1]. Higher frequencies must contend
with unintentionally generated man-made noise [2]. Among the
sources of impulsive noise on the sonar channel [3] are ice
cracking and snapping shrimp. A more detailed presentation of
the sources and characteristics of impulsive noise is given in
Chapter 1I.

Throughout this dissertation the noise samples will be
considered independent. Although this assumption is not in

general valid [4], it allows nth

order noise density functions
to be expressed as products of first order densities thus greatly
simplifying the detection problem. For many of the results of
this dissertation, the independence assumption can be relaxed

using the weaker condition of strong mixing (see, for example,

Chapter 1II - Section 1).
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The detection problem, with which this dissertation is
concerned, is perhaps best expressed as a hypothesis testing

problem:

6 >0, i=1,...,N

H is the hypothesis that the observations {xi}f consist of

noise only. The aite:native K is that in addition to the noise,
a known signal {esi}§ is present. The (ni}§ are the

realizations of the random variables {Ni}f which may be formed
from sampling an underlying cortinucus-time random noise process.
Throughout this dissertation the {Ni)T are assumed to be indepen-
dent random variables with densities {fi(-)}? where fi ¢ F some
class of symmetric densities. The s; are assumed to have their
absolute values upper and lower bounded by positive constants M

and m; so that 0 < m) < I8y

The optimum detector, in terms of maximizing the probability
of detection while keeping the probability of false alarm below a
certain level, is given by the Neyman-Pearson lemma [5]. This
detector compares the likelihood ratio to some threshold which is

chosen to achieve the desired probability of false alarm.

fx(x) > T decide K
Lix) =. {
)

oa *)

< T decide H

(1.1)

(1.2)
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The £, (x) and f.(x) are the probability density functions for
the observation vector X under K and H respectively. Since the

noise samples are assumed independent and the signal is known, the
f.(x) and f_ (x) can be written as products of the univariate

noise densities:

N
f(x) = I £5;(x; -~ 68s;)
K\& i=1 b i i (1.3)

N
fy(x) =i£lf?(xi)

The optimum detector can then be written as

[[R=}~-

L(x) = i=1 (1.4)

£i(x; - 6s3) ‘ > T decide K
N .
it <T; decide H

£i(x;)
i=l
In order to simplify the detector, it is common practice to take
the natural logarithm of Eq. (1.4). This yields the

Neyman-Pearson optimum detectcr:

fi(x; - 6s5) { > T decide K (1.5
1.

< Ty decide H

x Figure 1.1 displays a block diagram for this detector. The

3 structure is that of a time dependent nonlinearity

£ij(x; = 6sj) ( )
gi(xj) = gope. (x3) = log 1.6
ilxj opt, ‘*i £i(xs)
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E'- followed by a summer and a threshold comparator. Unfortunately,

R this nonlinearity is often difficult to implement. ]
tn In small signal cases a simpler detector, the locally 'S
E optimum detector, is often used. Unlike the Neyman-Pearson

F optimum detector, which maximizes the probability of detection

‘ii (from here on referred to as the power of the detector) for a

fixed probability of false alarm (referred to as the level), the

locally optimum detector maximizes the slope of the power

function (power versus signal strength) at the origin.

Since the slope of the power function corresponds to the increase
in power as signal strength is increased, the locally optimum
detector's performance should ke nearly as good as that of the
optimum detector for small signals.

The locally optimum likelihood ratio [6] is

)
3e fk(x) (1.7)
L(x) =
fa(x) 6-+0
Since fyx(x) approaches fy(x) as 6 - 0, L{x) can be written
o L(x) = & log fx(x) (1.8)
:
@ . .
: Substituting in (1.3), taking the derivative, and allowing 6 to
f approach zero, yields the standard form for the locally optimum
L
E~ detector.
@
N £, (xy) > Ty decide K
Tloc(i) z (-sl) . (1'9)
{ =] fi(xi) < T, decide H
: @
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This detector has the same structure displayed in Figure 1.1 with ;,j

£5' (x;) |
9i(Xj)= g10c. (X5) = (-s§) (1.10)
1 £i(x3)

- - -

The time dependent nonlinearities gopt,(*) and gj,c (+) are ®

i i
related [7] by the equation
Xi
i 51 i
xi-esi

and the fact that gjoc.(*) is the linear term in the Taylor
i

expansion of gopti(’)‘

gopti(xi) = egloci(xi) + {higher order terms} (1.12)

For small values of g, gopti(') is often approximated by
egloci(')'

In addition to the power function, another useful measure of
detector performance is provided by the concepts of efficacy and
asymptotic relative efficiency [6]. Asymptotic relative
efficiency (abbreviated ARE) is used to compare two detectors

based on the asymptotic ratio of the number of samples regquired

by each to achieve the same level and power. That is, if ; K
nl(a.B.e) is the number of samples required by Detector 1 ;!f
to achieve level g and power g with signal strength 8 and .
i ny(a,B8,6) is the corresponding number for Detector 2, then ';
¢ 2 B




na(a,8,6)

AREl,z = lim ____ __ __
8+0 nj(a,B,8)

locally optimum detector.

using the test statistic T(x),

T(x) { > T decide K
- <T decide H

then the efficacy [8] of D, is given by

) 2
. [ﬁ Ex[T(x)] | e»o]
EDl = 1lim

N+=  NVary[T(x)]

T YT,
. . LY B ‘, L -

calculated [8] from

(i Bl

[u ', T

(1.13)

Thus, if Detector 2 requires (in the limit) twice as many samples
as Detector 1 (n2 = 2n1), then AREI'2 = 2 and one could say
Detector 1 is "twice as efficient" as Detector 2. Often the
linear detector is used as a reference detector for comparing
nonlinear detectors using ARE. ARE is by definition a small
signal (and consequently a large sample size) concept. It can be
shown [6] that the nonlinear detector which has the maximum value

of ARE (using some reference such as the linear detector) is the

Although Eq. (1.13) provides the definition for ARE, the
concept of efficacy provides a much simpler way to calculate it.

If Dl is a threshold detector for the problem expressed by Eg. (1.1)

(1.14)

(1.15)

where E [T(x)] and Var,[T(x)] are the expectation under K and

the variance under H of the test statistic. The ARE can then be

JRNY 3
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AREDl,DZ = = (1.16)
ED2

Another definition which will be used frequently is Fisher's

measure of information [5] for the location parameter in a
density. For the problem stated in equation (1.1), Fisher's

Information may be expressed as

I(f) -/ (.g.(%_))z £(x)dx (1.17)

A brief outline of the res:t of this dissertation will now be
presented. Chapter II focuses on impulsive noise. First, the
physical sources and properties of man-made and naturally
occurring impulsive noise are discussed. Several models for
impulsive noise are then presented. Well known empirical models
(mathematical constructs designed to fit the data) and physical
models (which are directly related to the underlying physical
mechanisms) are described. Due to the complexity of these models
and the need for simple density functions to approximate the
first order characteristics of impulsive noise, three density
systems are considered. They are: a generalized Gaussian noise,
the Johnson Su System, and a mixture model. Graphs of the
density functions, their optimum and locally optimum non-
linearities, and values for Fisher's Information are given for a
range of values for the parameters of these systems. The chapter

ends with a discussion of techniques which may be used for the

detection of signals in an impulsive environment.
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Frequently in detection problems, the statistical

characteristics of the noise are not well established. In many
cases, mini-max detectors may be used to achieve robustness.
Chapter IIl presents results which facilitate the design of these

detectors. First, the asymptotic performance (measured by the
level and power of the test) of optimum detectors is related to
the value of Fisher's Information for the underlying noise
distribution. The density with minimum Fisher's Information over
a given class of densities is seen to offer the worst environment
in which to detect signals. This density, along with its locally
optimum detector, is shown to form a saddlepoint. Several
classes of densities are discussed, and conditions are
established for the mini-max detectors.

Chap;er IV presents an adaptive detection scheme. The
Johnson Su system of densities is used as a noise model.
Quantiles are used to estimate the tail behavior of the first
order density function of the noise. This estimate, along with
an estimate of the variance, determines the detector's
structure. Simulation results are presented which indicate that
this detector will perform well over a large variety of
background noises.

This dissertation ends with a brief summary and some
suggestions for future research. An attempt has been made to
keep all symbols used consistent throughout the text. Those
symbols which were not presented in this introduction are
presented as needed in the chapters. Chapters 11, 111, and 1V

are independent and may be read in any order.
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Chagter 11

IMPULSIVE NOISE: CHARACTERISTICS, SOURCES, AND MODELS

This chapter serves as an introduction to impulsive
noise. Section 1 contains a brief discussion of the
characteristics and sources of impulsive noise. Section 2
presents several of the more common impulsive noise models.
Empirical models designed to fit first order statistical data,
and physical models directly related to the underlying physical
mechanisms, are described. Most of these models are quite
complex and do not lend themselves easily to detection
problems. For this reason, Section 3 presents three density
function systems which can be used to approximate the first
order characteristics of impulsive noise. Section 4 ends the
chapter with a discussion of techniques which may be used for

the detection of signals in an impulsive environment.

Section 1: Characteristics and Sources

Impulsive noise can be characterized by a relatively small
number of random, high amplitude bursts. Unlike either thermal
noise or high density shot noise, each of which consists of a

large number of sources contributing small disturbances and thus
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satisfies the conditions of the Central Limit Theorenm,
impulsive noise typically consists of relatively few bursty
sources. The Central Limit Theorem is not applicable, and the
noise is distinctly non-Gaussian. The first order density
functions usually have much heavier tails than that of the
Gaussian distribution. 1Impulsive noise can rarely, if ever, be
considered white. Samples are not independent. However, due

th order non-Gaussian

to the complexities of studying n
distributions, most research has centered on describing the
first order characteristics. The independence assumption is

then necessary to describe high order behavior.

Natural Noise Souces

Impulsive noise sources can be grouped into two
categories: naturally occurring and man-made. Perhaps the
naturally occurring impulsive noise which has captured the most
attention in the literature [1,2,3,4] is atmospheric noise. It
adversely affects communications systems from 1 kHz to 30 MHz.
The total atmospheric noise measured at a given location can
usually be treated as the sum of many individual lightning
discharges modified by the appropriate propagation path. Due
to the fact that at very low frequencies signals can propagate
several thousands of miles, even extremely distant storms can
raise havoc with radio communications. The following
description of lightning discharges is due essentially to Watt

and Maxwell [1].
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A lightning discharge consists of both a predischarge and

a main discharge. The predischarge consists of a series of

short leader strokes, 30 to 200 feet in length, which attempt
to establish an ionized path from the cloud to the ground.

Each leader stroke is a current pulse of approximately 300
amperes and lasts about one microsecond. A new stroke occurs
every 25 to 100 microseconds. This process forms what is
termed the predischarge or fine structure of the lightning
stroke. It tyrically lasts about one millisecond. According
to Hall [4], the energy radiated by the predischarge has a 3 4B
bandwidth of about 40 kHz with a maximum at approximately 30
kHz. The spectrum falls off as 1/f.

Once a leader reaches the ground, the main or return stroke
follows the ionized path from the ground to the cloud. It
consists of a 20,000 ampere current pulse and lasts about 100
to 200 microseconds. The return stroke accounts for about 95

percent of the total energy radiated by the lightning

discharge. Often the main discharge is followed by one or more

additional strokes which follow the same ionized path. The

Ei main discharge radiates power at a much lower frequency than

é! the predischarge. The center frequency is about 10 kHz and the

g' upper 3 dB point is approximately 15 kHz [4]. Beyond this, the

E spectrum decreases as l/f?.

Eé The majority of the power in VLF (3-30 kHz) and LF (30-300 kHz)

atmospheric noise comes from the powerful return strokes. However,
since the return strokes' power spectra decrease as 1/f?,

predischarges contribute the majority of the atmospheric noise at

@ .
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MF (300~3000 kxHz) and HF (3-30 MHz). For still higher

frequencies, atmospheric noise caused by lightning can usually be

S

ignored. :’ﬁ
Due to the many leader strokes of the predischarge and the 'f
occurrence of multiple return strokes, the received noise pulses :E
may not be considered independent. However, neglecting the Q.?

continuously changing effects of weather and propagation paths,
these clusters of noise pulses may usually be considered
independent of one another. In temperate climates a low
frequency receiver will detect an average of one stroke every
second [4]. In the tropics the average rate may be as high as
100 per second [4].

The sonar channel is also affected by naturally occurring
impulsive noise. The major contributor in shallow water is
marine life. Many species can produce underwater sounds which
can mask desired signals [5,6]. Among the more important noise
makers are snapping shrimp and croakers. Snapping shrimp,
usually found in shallow tropical or subtropical water, make a
crackling sound by repeatedly snapping closed their claws.
Croakers, found predominantly in bays on the east coast of the

United States, produce repeated bursts of tapping sounds. 1In

v areas with a large croaker population, the sound can resemble a
continuous roar. Porpoise barks and gobbles, sea robin squawks,

and toadfish "boops" may be among other additions to the chorus.

: These bursty sources of short duration sounds can yield a
constantly changing, highly impulsive noise environment.

o In polar regions, ice cracking and floe movement are the
major contributors to acoustic impulsive noise. Milne and Ganton

9

[ ibmitdvmdedtes



[7]) have measured acoustic noise, including amplitude
distributions, under arctic sea ice. When the ice pack is
solid, thermal stresses cause surface cracks which can be heard
by a hydrophone below. At low frequencies (below 1 kHz) the
noise is found to be impulsive. For frequencies above 1 kHz a
more Gaussian noise has been recorded. They hypothesize that
the low frequency noise is caused by medium to large thermal
cracks in the sﬁrface ice. Higher frequency noise appears to
be caused by numerous smaller thermal cracks located near
irregularities on the ice surface. During the summer months
many ice packs break up. Acoustic noise then results from the
motion of the ice and collisions between ice floes. Under all
but a relatively small range of frequencies, the summer ice

noise is found to be non-Gaussian.

Man-made Noise Sources

Middleton [8] divides man-made impulsive noise sources on
the radio channel into two categories: narrowband, for sources
whose noise spectra are narrower than the bandpass of most
receivers, and broadband. Automobile ignition noise, generally
considered to be the most important VHF/UHF noise source in
metropolitan areas [9], can be classified as broadband. It
consists of random, very narrow noise pulses. Neon and
fluorescent lights also contribute broadband noise [8,9]. The
random impulses are less intense than those from automobile
ignitions and can usually be considered a local disturbance.

Other broadband impulsive radio noise sources are arc welders,
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oil burner ignitions and other ignition noises. Narrowband

t noise includes emissions from high voltage transmission lines — -
5 and generating stations, electrical motors, and various other

electrical devices. 1Interference from other communications and

radar systems can also be considered as narrowband impulsive

noise.

The sonar channel is also affected by man-made noise

F [5.6]. Ships contribute appreciable acoustical noise in
harbors and shipping lanes. Also, industrial plants along the
coastline can be heard for a considerable distance offshore.
Telephone circuits must contend with switching noise. It
is often modeled as an impulsive process [10,11). The noise is
broadband. Since the impulses usually occur in bursts, errors

in digital transmissions are often bunched together.

Section 2: Impulsive Noise Models

Impulsive noise models are often grouped into two
categories: empirical models and physical models. Empirical

models are mathematical constructs which attempt to fit

measured statistical data. Little or no attempt is made to
relate the model to the physical mechinism of the process.
Physical models, on the other hand, attempt to describe the
entire noise process. Most consider the received noise as a
sum of filtered impulses. Due to the mathematical difficulty

avolved with studying nth order distributions, most research

LA SR SR SRSLARGN S AL - Sese S On e e e

has concentrated on first order characteristics. The main

‘r'vrr'.—."
[

-

2 P FU SRRV |
PP DR S A R W Gy T P ¢ Semunte




A

v vy

nA B

e e e o —E YT

—
Q.

-17-

emphasis in the literature is on the modeling of the

probability distribution of the narrowband noise envelope.

Most work has centered on atmospheric noise.

Empirical Models

In most situations a received noise process, after having
passed through the bandpass filter of the receiver, can be

considered as a narrowband signal
£(t) = x(t)cosluwt + ¢(t)]
When f(t) is a Gaussian process, samples of the envelope x(t)

are random variables having a Rayleigh distribution. The

Rayleigh distribution is given, in standard form, by

- x?
g(x) = %7 e 20° , x>0
= 0 ’ xso

The mean is 0.5V27 6. The variance equals (2-n/2)c?.

It has been found [12] that the Rayleigh distribution is a
close approximation to the low-amplitude, high-probability
portion of the atmospheric noise envelope distribution. This
is because the low-amplitude portion of the distribution is
caused by the superposition of many overlapping small pulses
which, according to the Central Limit Theorem., tend to behave

like a Gaussian process. However, atmospheric noise, and

(2.1)

(2.2)
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impulsive noise in general, has far more large amplitude spikes _;
than predicted by the Rayleigh distribution. For this reason, ff
the log-normal distribution was proposed [13]. 1Its density in j;:
standard form is %;
! - )2 ®
plx) = L le Zoz (109 % = W ,X>0 (2.3) 1
= 0 +x<0 -.g
‘0 3

The mean is ep * 02/2. The variance is given by ezu + Oz(ecz- 1l).
Figure 2.1 displays both the Rayleigh and log-normal '
distributions. The parameters are chosen such that both 3’?
densities have the same mean (0.5y2n = 1.253) and variance
(2-1/2=0.429). The much heavier tail of the log-normal ;ES
distribution can be seen in Fig. 2.2, which is an enlargement 2”%
of the tail area of Fig. 2.1. Since tail behavior is very ;_f
T
important in impulsive nojse modeling, a more accurate method u:j
of display is required. ﬁ.g
Impulsive noise data is often plotted on Rayleigh graph ffj
Paper. Rayleigh coordinates are chosen such that the Rayleigh ;?s
distribution plots as a straight line. For the cummulative slq
distribution function F(x) = Prob(x < t), one would plot : }
20109(x/xrms) on the vertical axis and -log(-1n[l - F(x)]) on : ?
the horizontal axis. Fig. 2.3 displays both the Rayleigh and ;!;
1o§-norma1 distributions using Rayleigh coordinates. The 5 j
heavier tail of the log-normal is now more readily apparent ; 1
(left hand side of the graph). :!4
|
}
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Fig 2.4 shows atmospheric noise data measured at Boulder,
Colorado [12]). The shape of the curve is typical for broadband
impulsive noise. Neither the Rayleigh nor the log-normal
distribution provides an acceptable fit over the entire range
of values.

A graphical technique to derive the envelope probability
distribution function for atmospheric noise, given measurements
of three moments, was developed at the National Bureau of
Standards [12]. These three moments: the average noise power,
the average envelope voltage, and the average logarithm of the
envelope voltage, were continuously recorded during the
International Geophysical Year (1958) at sixteen stations
throughout the world. The graphical method was developed to
utilize this information to accurately model atmospheric noise.

Analyzing the data, it was noticed that the atmospheric
noise envelope probability distribution, when plotted using
Rayleigh coordinates, could be approximated by a three section
curve. The low-amplitude, high-probability portion corresponds
to the Rayleigh line. The high-~amplitude, low-probability
portion can be approximated by a straight line of somewhat
steeper slope. It can be shown [14] that all functions of the
form F(x) = 1 - exp(-kxm) (and only these functions) will map
on Rayleigh coordinates as straight lines. This family of
curves, which includes the Rayleigh distribution, is often
called the power-Rayleigh distribution. The middle amplitude
portion of the curve was then approximated by the arc of a
circle tangent to the two lines. The center of this circle
lies on the bisector of the angle formed by the Rayleigh and

power-Rayleigh lines.
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Four parameters are needed to specify this approximation

to the true distribution:

(1) a point on the Rayleigh line

(2) a point on the power-Rayleigh line

(3) the slope of the power-Rayleigh line
and (4) the radius of the circle
Empirical relationships were developed [12] to obtain these
four parameters from the three measured moments. Thus, by
measuring the three moments, a function can be obtained which
is a fairly accurate approximation to the envelope probability
distribution function of the noise. A method was later
developed [15] to obtain the distribution function for any
bandwidth by transforming the distribution function obtained
for the bandwidth of the measurements. These graphical
methods, although fairly accurate, were not given any
theoretical justification. Even more importantly, the
procedures are of limited use in the analytical treatment of
optimum detectors and estimators.

Many other distributions have been suggested to model
impulsive noise (see [8] for a concise list). Most are limited
in application and not entirely successful. None of the
empirical models give a true picture of the entire interference

process.

Physical Models

Most physical models attempt to describe the entire
interference process by modeling the received noise as a sum of

filtered impulses:

v
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x(t) = | plaj: t-ty) (2.4) -]
i=1 e
The (ai}§ are random variables which describe the pulse
amplitudes, p(+) describes the pulse shape, and the random o
‘e
variables {ti)T are the occurrence times. Different }
assumptions for these variables can lead to quite different

models.

Furutsu and Ishida [16] were interested in modeling the HF
radio noise which is predominantly caused by the fine structure
of the lightning discharge. They viewed each predischarge as a
noise packet. They assumed Poisson occurrence times for these
packets. Within each packet they modeled the fine structure as
another independent Poisson process. This model, consisting of
Poisson noise packets occurring in a Poisson manner, is often
called Poisson-Poisson noise.

In order to study the narrowband noise envelope, Furutsu

and Ishida assume the following filtered impulse model:

N N'

x(*) = [ I (e, ty, t'ijr ajyleosfuwlt-t';4)=6i5] (2.5)
i=1l j=1

where t = the time of observation

.th
t. = time of occurrence of 1t pulse packet
th

.th s .
t'.. = time of occurrence of the Jt pulse within the i
packet

w = receiver center frequency

°ij = phase of the jth pulse within the ith packet
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They assume the phase is uniformly distributed over (0,2n).

The packet occurrence times are assumed to be uniformly
distributed over the interval of observation (0,T) and the
random pulses are assumed uniformly distributed over the length
of each packet. The probability that N' pulses occur in time

(0,t), within a packet, is given by

, N' =v't
P '(N') = (_%Ht__) e

The probability that N packets occur in (0,T) is given by

-VvT

N
Pr(N) = (VT) e
N!

For clarity, let 1t = t - t;, = the length of time from the

th packet to the time of the observation, a = a.,

start of the i i

and t' = t‘ij' Now assume

-8(t-t') =-at'’
t(t'ti't'ij'aij) = t('tpt.pa) = ae e

at' -8(t-t"')

Here e~ is the receiver impulse response and ae

is the amplitude of the impulse within the packet. Note that,
although 'a' is a random variable, the impulses will tend to be
larger at the start of a packet and then will tend to decrease

in magnitude. Also, 'a' is assumed distributed according to
w(a), some function which is chosen considering the spatial

distribution and strength of the impulse sources.

(2.6)

(2.7)

(2.8)
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Using the above assumptions, Furutsu and Ishida calculated
the first order density function for the noise envelope. Their

results are

£(E) = { EXx JoLEA] ¥(X) ax

Here Jo[-] is the zero order Bessel function (lSt kind)

and y(A) is the characteristic function,

T
vix) =exp { v [ [¥'(}) - 1] at }
where,
V) =exp (v [T [T w(a) (Ghaw(nt',a)] -1) da at')

Upon substitution of r(1,t',a) and w(a) the integrals become
guite intractable. Simplifying assumptions lead to solutions
for special cases. These solutions have shown fairly good
agreement with measurements. However, since the density
functions cannot be put in closed form in general, this model
is of only limited use in the analytical treatment of detection
and estimation problems.

Beckmann [14] proposed a different model for atmospheric
noise. He assumed individual atmospherics could be represented

by pulses, whose envelopes could be written as

(2.9) .

(2.10)

(2.11)
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‘(t-tk)/a
uy = Ex e . 2ty
(t=-tg)/b
= Ek e ’ t<tk

The rate of decay for the spikes was assumed to be much slower
than the rate of upsurge (b<<a). For convenience, define

c = (a+b)/2, the average time constant. Beckmann chose the
peak amplitude Ek to be log-normally distributed. He
justified this as follows. Divide the propagation path for a
given atmospheric into a large number of section;. Assume the
attenuation for each section is independent of the rest and
that no one section's attenuation will dominate. Then the
total attenuation (expressed in dB) will be normally
distributed (mean p, variance o?). Since the log of the

peak amplitude (Ek) is proportional to the total attenuation,
the peak amplitude is log-normally distributed.

Using Poisson occurance times (with v = the mean number
of pulses per unit time) and considering the phase to be
uniformly distributed, the values for all the pulses, both
rising and decaying, are summed. In the low density case
(ve<<l), the nearest pulse will dominate the others. The
rest can be approximated by a single pulse with a Rayleigh
envelope. Thus the received noise can be modeled as the sum of
a pulse with a log-normally distributed envelope and a pulse
with a Rayleigh envelope. Beckmann calculates the distribution

function of the total noise envelope as

P DL PP T PUE L W WO S D S S o anisneisiiendiie it et Ao P PO
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£(E) = 2E 1 1 -(lny = u?_E?+y?y 1 (29E) g 2. I
?! (E) M I Zno y expl 20° M ) o( M ) ay (2.13) .,

2
where M = v2c2e2(° +“)ln(l/vc) is approximately equal

.“A‘L'AL"A‘_ W

to the noise power and Io(') is the 0th order modified Bessel y

-

function. This distribution is nearly Rayleigh for small E and

nearly log-normal for large values of E. The four parameters of

the density v, ¢, o and u can be directly related to the
properties of the noise. Both v, the mean number of discharges
per unit time, and c, the average time constant, depend only on
the properties of the discharges. The parameter o, the

standard deviation of the total attenuation of the pulses, and

M, the mean value of the total attenuation, are determined
almost entirely by the properties of the propagation path. Also,
when plotted on Rayleigh coordinates, v determines the

position of the Rayleigh line (low-amplitude, high-probability

line), o determines the log-normal curve (high-amplitude,

low-probability), and v, ¢, ¢ and u together determine the
;‘ rms value. Thus, knowing these four parameters, a density can be
: sketched by connecting these two functions with a circular arc as
-@ . o
N was done by Crichlow, et al. [12].
Although Beckmann's model is closely related to the

statistical parameters of the noise process, the integral of 1
Tb Eq. (2.13) is rather cumbersome. A general solution can only "f
be found for very small or very large envelope levels. Hence,
Beckmann provides a theoretical justification for the use of

® the log-normal distribution for strong atmospherics, but he "4

e Bl bnd sk,
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doesn't provide a density function which can represent the
noise over the entire range of interest. Giordano [17] And -4
. ' [
Middleton [8,18,19,20] have both developed filtered impulse :
models which are much more widely applicable. Giordano's model ‘ E
is similar to those previously described and will not be

treated further. Middleton's model is a more complete and a
more general model than those presented above.

Middleton represents the received noise process as
y(t) = x(t) + n(t) (2.14)

where x(t) is the impulsive corponent and n{(t) is a Gaussian

background (variance °G2)' He assumes

x(t) = ZUj(t,Q) (2.15)
J .

where Uj(t.g) is the waveform emitted by the jth source after

having passed though the receiver. All received noise pulses are

hard

(2" Sl Sk ot ot S00h e 2 SHA La LD S0 ae
B z o

assumed to have the same basic waveform with random variations
in scale and structure represented by the random parameter §.

e Middleton assumes the sources emit independently in time
according to a Poisson distribution with mean rate v. He
denotes the mean duration of a pulse by T. The source locations

are assumed Poisson distributed in a space A with coordinates ).

<
Middleton uses characteristic functions to derive the
¢
density function for the noise. He considers two cases:

L. narrowband (noise whose spectra are narrower than the passband
S
[ of the receiver) and broadband (noise with spectra comparable to
F
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or wider than the passband of the receiver). Note, however,
that both cases produce narrowband noise in the receiver. That
is, in both cases the noise can be modeled by its envelope and
phase. For both the narrowband and broadband cases, the

characteristic function for x{(t) can be written,

Vi(u) = exp[E{A J_(Bu) - A}]

oth order Bessel function (lst kind),

where Jo(-) is the
B = B(t,),8) is the envelope of U(t,8) (which can be

directly related to the physics of the noise generation and
propagation), and A = VI is the first basic parameter of the
model. The parameter "A" is termed the "Impulsive Index." It
measures the amount that the noise pulses overlap in time. For
high levels of overlap (large A), the density will approach the
Gaussian distribution. When the amount of overlap is small
(small A), the resulting noise will be highly impulsive.

For narrowband noise, several approximations can be made in

Eq.(2.16). The resulting characteristic function for x(t) is

m -R E{B?}u?
A_ e4
Om

He— 8

vy (u) =~ e~
m

The characteristic function for y(t) is then

wy(u) = pxlu)e e

(NI
Q
@Q
c

-0 E{B?}u? - log2u?
ze'AfAmez(} ¢
=
m=0 m.

(2.16)

(2.17)

(2.18)
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This function can now be inverted. Letting z be the normalized

noise (z = y/y, p¢): Middleton finds for the probability
density function of the instantaneous amplitude in the

narrowband case:

-A } A" " 2o ?
f(z) = e ] —2=— e “Om (2.19)
n=0 ®: 2oy

where

o = L (2.20)
m 1 + P
and "P" is the ratio of the power in the Gaussian background to
that in the impulsive component
og?
= (2.21)
1/2[A E{B*}]
It is the second basic parameter for the narrowband model.
Note that Eq. (2.19) is just a weighted sum of Gaussian
distributions with increasing variance oﬁz. For the
envelope of the received noise, the model yields
© m -EQZ
Prob [E>Eg] = e ™ | .57 e Onm (2.22)
m=Q I

which is just a weighted sum of Rayleigh distributions.
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In the broadband case the simplifying assumptions for
Eq. (2.16) can no longer be used. The procedure becomes more .
difficult but is still tractable. One complication is that the
resulting density has infinite variance for certain ranges of

the parameters. Thus, to normalize the noise, the power in the

Gaussian background alone is used: 2z = Y/nrms‘ The density

can be written

f(z) = 1 e £ (1) a, rm%ﬂ) 1F1 ("B % z?) (2.23)

=]
8

where lFl(-,-,-) is the confluent hypergeometric function [21],
I'(e) is the gamma function and a, Aa are the two basic
parameters for the model. They are both related to the source

distributions and propagation laws for the noise. The envelope

in the broadband case 1is

-Eg? @ m m
ProblE>E ] = e (1 - E;2 ] 1) A, r(1 + me). (2.24)
mgl M. 2

'lFl(l - g—'al 2: EOZ)J

Middleton has presented evidence that Egs. (2.22) and (2.24)
are accurate representations for the envelope of impulsive
noise. Figs. 2.5, 2.6, 2.7, and 2.8 are taken from [8].
Fig. 2.5 shows a comparison between Middleton's narrowband
model (A=0.35, P= 0.5x10-3) and actual narrowband impulsive
noise data. Fig. 2.6 is a similar display (A=10"%, P=50) for

narrowband electromagnetic noise from ore crushing machinery.
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(from Spaulding and Middleton [8])
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In both cases agreement between the model and data is quite

good. Figs. 2.7 and 2.8 compare Middleton's broadband model

with measured impulsive noise data. Fig. 2.7 shows broadband
man-made noise (primarily automobile ignition noise) and

Fig. 2.8 displays atmospheric noise. Again close agreement
between the model and measurements are found.

The most important aspect of the Middleton model which
sets it apart from the rest is that the parameters for this
model (A and P or a and Aa) can be determined explicitly
from physical considerations. The model can be tested by the
data rather than just fit to the data. The chief problem with
this model is the assumption of independent noise pulses. This
often is not valid. Unfortunately, as with the other models,
the equations are intractable without this assumption.

Another physical model was proposed by Hall [4]. Although

not as comprehensive as the Middleton model, it deserves

ﬁ, attention because it is not of the filtered impulse type. Hall
‘I was interested in modeling VLF atmospheric noise. 1In order to
s achieve a large dynamic range, he proposed a model which

E_ considered the received noise process to be of the form

e

- y(t) = a(t)n(t) (2.25)
; where a(t) is a slowly varying stationary random process and

:! n(t) is an independent, narrowband Gaussian process. Hall

T selected a first order distribution for a(t) which was

E analytically tractable and which yielded good agreement with

P. measured atmospheric noise data. His distribution for a(t) is:
F
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m/2 -
fala) = —{R/2) L_ o %270 (2.26) g
o®Ir(m/2) laim+l E
g
where m and o are two parameters to be chosen. Using the 3
first order distribution for the Gaussian process, -
0.‘
o
fa(n) = 1 e 20; (2.27)
ﬂn o1

he calculated the first order probability density function for

y{t) as
(y) T(g) Ye-l ! (2.28)
£ (y) = —x= .
y L N A
where Y =ml§ g—l
6 =m+ 1

For the special case o, = 0. Eq. (2.28) reduces to the
density for Student's “t". Hence, Hall named Eq. (2.28) the
generalized "t" distribution.

As a check on his model, Hall calculated the first order

distribution function for the envelope and phase of y(t). He

obtained
3 _ 8-1 E '
® (BF + vH)73 ®-4
r .
F ]
p’ 1
b 1
4 ‘
| @ ®-
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and a uniform phase. For 6 in the range 2<gs4, Eq. (2.29)
agrees well with VLF atmospheric noise data. The value 6=3
is best: however, the density function [Eq. (2.28)] has
infinite variance for 6=3 and thus can not represent a real
process.

Although Hall's model is simple enough to use in detection
problems and is fairly accurate, it does not have a strong
physical basis. The parameters 6 and y have no real physical
meaning and must be selected to fit statistical data rather

than physical conditions.

Section 3: Tractable First Order Non-Gaussian Noise Models

Although the models described in Section 2 are very
detailed and many are quite accurate, they are all quite
complicated. Most cannot be used in analytical treatments of
detection problems. Those which can are cumbersome. There is
a need for simple, first order families of densities which can
be used to describe the first order statistics of non-Gaussian
noise. Three possibilities are: a generalized Gaussian noise,
the Johnson Su System, and mixture models. These three
systems are used throughout this dissertation to provide

examples.
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A Generalized Gaussian Noise

T?: A generalized Gaussian noise [22], which provides a system ..j
| of density functions whose tails can be made heavier or lighter ﬁ
5 than that of the Gaussian distribution, is given by _‘;
: 'Q1
c
£(x) = gnlo.c) e-[n(o'C)'x'J c>0 (2.30)
2T (1/c) '

where
1/2
n{o,c) =

Qi

T(3/¢c)
r(l/c)

The case c=2 is the familiar Gaussian distribution and c=1 yields

the Laplace or double exponential distribution. The density

functions are plotted in Fig. 2.9 for values of ¢ in the region

- of most interest, ¢=0.5 to c=3. ’

: The locally optimum nonlinearities for detecting a constant

F signal in this noise are given by 1
g (x) = clnlo,e)]° ix €71 sgn(x) .c>0 (2.31) o

» loc ! -4

[® 1

ty‘ They smoothly cover the transitions from a blanker, whose tail :

;' region decreases as 1/x, through the sign and linear detectors, o

=1

@ .

9 to an expander. The locally optimum detectors corresponding to )

E the densities of Fig. 2.9 are given in Fig. 2.10. The c=2 case :

& i

r @
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Fig. 2.9 - Generalized Gaussian Noise: Density Functions
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is of course the linear detector and c=1 gives the hard limiter

or sign detector. The Neyman-Pearson optimum nonlinearities

for the constant signal case are

Iopt (X) = [nlo,e)I® (1x1€ - 1x-81°) ,©>0

These are plotted in Fig. 2.1l for the signal strength 8=¢/2.
Fisher's Information can be calculated by substituting

Eq. (2.30) into Eq. (1-17). After integrating [see Appendix

2.1) one obtains,

c2 r(3) r(z-1)
c C

I(£)

,c21/2
o2 [1‘(%)] 2

= ® ,O<cgl/2

This function is plotted in Fig 2.12. Since the Gaussian
distribution minimizes Fisher's Information over all fixed
variance distributions, the curve has a minimum at c=2. The
peaked origin of the density function accounts for the greater
information for location for c¢<2, and the greatly diminished

tails account for the case c¢>2.

The Johnson S System

The Johnson S System (23] can be used to provide a
system of heavy-tailed symmetric distributions. It is formed

by a memoryless transformation of the Gaussian distribution,

1
1
1

[

e

tad deai s

.
A

(2.32)

Aaiaia’al

@
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(2.33)
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- nn(E2Y)
X = a+ X sinht—g—
The resulting density functions can be written

2

£(x) = = & [1 + (X8, e
A

2 4-1/2 -1/2{y + ssinn” 1 (X:2)}
V2r A ]

The parameters a and Y, which affect location and symmetry
are set equal to zero. The parameters § and A affect the

shape and scale of the densities. The choice of

1/2
202

2
e2/6

yields densities of common variance o?. Thus the densities
can be specified by the two parameters o2 and §. A few
densities from the Johnson System are plotted in Fig. 2.13.
Small values of § correspond to heavy-tailed distributions.
In the limit as § + =, the densities approach the Gaussian

distribution.

The locally optimum nonlinearities for the detection of

constant signals are given by

-1/2

2 2
- x x x
9100 (X) = [1 + (% ] %) + [1 + 3

> jon

sinh” (5)
A

°
i
(2.34) .‘4
o]
(2.35)
(2.36)
j
°
.
(2.37)
1
Ly
7
1
-
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The nonlinearities corresponding to the densities of Fig. 2.13

are given in Fig. 2.14. All locally optimum nonlinearities in
this system are noise blankers since iiﬁ 910c(x) = 0 for all
§ [see Appendix 2.2]. The Johnson S, System is an
especially useful noise model since its distributions appear
Gaussian in the middle but have heavier tails. That is, the
locally optimum nonlinearities are nearly linear about the
origin, but all become noise blankers eventually. The
Neyman-Pearson optimum nonlinearities for ¢=g/2 are plotted
in Fig. 2.15.

A graph of Fisher's Information versus the parameter §
is given in Fig. 2.16. Small ralues of §, corresponding to
heavy-tailed distributions with large peaks at the origin, have
relatively high values for Fisher's Information. As §
increases o?1(f) rapidly approaches one, the value for the

Gaussian distribution.

Mixture Models

Mixtures have been frequently used in data analysis to
either add uncertainty to statistical assumptions or to account
for gross errors [24,25,26,27). They have also been used in
detection problems to test the robustness of standard detectors
and to aid in the design of more robust detectors [28,29,30].

The basic mixture density is

flx) = (1 - e)fy(x) + efr(x) 0 <e <1 (2.38)
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The density fl(x) is the nominal density and is very often
chosen to be the Gaussian density. The density £,(x) is the
contaminant. It is selected to fit the particular application.

Huber [26] allows fz(x) to be a member of the class of all

LAUSLEE s Sk

distributions in his work on robust estimation. Others [24,25]

have selected fz(x) to be Gaussian with a variance much

o

larger (variance ratios between 2 and 100 have been used) than

The percent of contamination € is usually

that of fl(x).
chosen to be small (often less than 0.1).

Figs. 2.17-2.24 display the densities, detector

nonlinearities, and Fisher's Information for a mixture of two

Gaussian distributions. For fl(x), the Gaussian density with

variance clz = 1/(1-¢+ey?) is used. The Gaussian density with

Thus,

variance o,%=y?g * the ratio is

1

and the overall variance is unity since

is used for fz(x).

2 2 . L2
sy /ol Y

cz=(l-s)olz*eozz=l. Figs. 2.17, 2.19, and 2.21 display the

densities, the locally optimum nonlinearities and the optimum

nonlinearities for the Gaussian-Gaussian mixture with y?=100

and various values for ¢. Figs. 2.18, 2.20, and 2.22 are

similar graphs for €=0.1 and various y? values. Note that
@ the high-probability, low-amplitude portion of the
nonlinearities is linear. This region is primarily determined

by the nominal density, which is Gaussian. The low-

2 ) probability, high-amplitude portion is also linear, but with a
{ different slope. This region is primarily determined by the

1 contaminating density. There is also a nonlinear transition

. @ region which connects these lines. Figs. 2.23 and 2.24 display
3

f Fisher's Information versus ¢ for y? = 100 and Fisher's

1

P.
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Fig. 2.17 - Gaussian-Gaussian Mixture: Density Functions
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Fig. 2.23 - Gaussian-Gaussian Mixture: Fisher's Information vs. €
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®,

1

Information versus y? for ¢ = 0.1. These are not straight 1
lines. However, over the range of most interest, the ;
relationships are nearly linear. ..
]

L

i

Section 4: The Detection Problem in an Impulsive Environment :':
4

The detection problem introduced in Chapter I [Eg. (1.1)] 1

can be solved if the statistical characteristics of the noise
are known. The optimum detector is given by Eq. (1.5) and the
locally optimum detector is given by Eg. (1.9). Both of these
detectors consist of a nonlinecrity followed by a summer and a
threshold comparator, as shown in Fig. 1.1. The difficulty of
course is that the density function for the noise is not
perfectly known. Eguations have been formulated (see Chapter
Il -~ Sections 2 and 3) to model noise; however, it must be
remembered that these are only approximations to the true
densities. The optimum detectors for these models will not
necessarily be optimum for the actual noise. Worse yet, the
noise is often non-stationary. The optimum detector would then
have to change to reflect the changes in the noise statistics.
Since optimum nonlinearities are difficult, if not
impossible, to design for actual noise, several authors

[29,31,32,33] have studied the performance of different

suboptimum nonlinearities. Bernstein [31] calculated the
locally optimum nonlinearity for a set of VLF atmospheric noise

data. He reported that the nonlinearity was roughly linear

near the origin and that it suppressed high amplitude

A - & PO N ‘-i
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observations. Both limiters and blankers can be used as

Ao avamna o

approximations to this type of nonlinearity. Fig. 2.25
displays simple limiter and blanker nonlinearities. The
performance of limiters and blankers for various noise models ]
has been studied [29,31,32,33]. The noise blanker (or hole
puncher) performs well for a wide variety of densities:
however, its performance is very sensitive to the selection of
the noise blanking level. The limiter (or clipper), although
d
not quite as effective as the blanker, is less sensitive to the e ]
selection of its limiting level. Other more complex

approximations to the optimum nonlinearities may be used [29].

The better the approximation, the better will be the
performance. However, the disadvantages of using a complex
nonlinearity in the receiver may outweigh the increased
performance.

Another approach to the problem of detecting signals when

the statistics of the noise are not well known is through the

techniques of robust detection. Often the noise can be ~@
considered to belong to a well defined class of noises. One

then must look for a detector which has reasonably good

PRI
PSP UP Wiy S

performance over the entire class. Several authors @
[30,34,35,36] have considered different classes of mixture ;
models. In many cases mini-max detectors have been established ',
for the class. Some results which facilitate the design of _.j
mini-max detectors are presented in Chapter III of this i
dissertation. i
If very little information is available on the statistical ;9;
characteristics of the noise, it is often wise to use i
N ¥
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nonparametric detection techniques. There are many good
references on nonparametric detection [37,38,39,40]. These
techniques will not be treated further in this dissertation.
For applications where the noise statistics are unknown or
time-varying and near optimum detector performance is
esgential, an adaptive detector may be necessary. Although

more complex than those detectors mentioned above, when

properly designed, it can be nearly optimum for a wide variety

of noise environments [41,42,43). Chapter 1V presents an

adaptive detection scheme which performs well for several

different noise densities.




Appendix 2.1

Fisher's Information for the Generalized Gaussian
Distribution of Chapter 1I -~ Section 3

Starting with Eq. (1.17)and substituting Egs. (2.30) and
(2.31), we have

® 2
1(f) = (M) £ (x) dx
o\ E(X) _

® c
i/P (en€ 1x|71 sgn (x) y2 —SEI- e Inlxl] dx, c>0

BRI ES
where n=z
1l
T(-c-)

This can be simplified to

3 2c+l oo c.c
= €N 2c=2 -n'x
I(f) ——;?IT— jg x " e dx, c >0

c

; Let t = ncxc and obtain

L@ 2.2 (=1

s I(f) = 91“-/t‘2’3”1 etar, >0

L 1

@ For ¢ > 1/2, the integral equals r(z-E) and thus

- c2n2 1 2 r( )T(2-—)

A I(f) = =1 T(2-E) 3—2-—-——-—1—-2-—— c > 1/2
- r(2) [r @]
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For 0 < c ¢ 1/2, let a = 2-%. Then 0 < c g 1/2 o ¢ 0 and

2 0
I(f) = i /t""l et at
(2-a)3r(2-a) Jg

However,

Thus I{(f) = » for 0 < ¢ ¢ 1/2. This establishes Eg. (2.33).
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Appendix 2.2

A Proof that lim gloc(x) = 0 for Johnson's su System

bl

One can write

29~-1 24-1/2 2
_ X X X 8 Loa=1 %
gloc(X) = [l + (T) ] : (')“2) + [1 + (T) ] =5 sinh (7)

__x_, s2sinntixy

AZex? A [1 + xz/xz]I/Q

Then,

=1
, . §2sinh ~(x/))
lim g (x) lim
xww 1OC x+» A [1 + x?/22]172

62
lim - =0
X0 X

by L'Hopital's rule.
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Chapter 111

MINIMAX DETECTORS

In many detection problems the statistical characteriza-
tion of the noise is not complete. For example, it may only be
possible to define a class of probability densities which
contains the actual noise density. In such cases minimax
detectors may be used to guarantee a lower bound on detector
performance for the entire class.

Once a class of densities has been specified, the worst
case density within the class must be identified. The best
detector for this density is the minimax detector for the
class. Sections 1, 2, and 3 of this chapter establish the pair
(fo'Do) as the saddlepoint of this détection problem. The
density fo is the member of the class with minimum Fisher's
Information. The detector Do is the locally optimum detector
for density io. In Section 4 a few classes of densities are

considered and relationships are established to determine the

minimax detector.
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Section 1: The Relationship Between Fisher's Information and

the Asymptotic Performance of Optimum Detectors -

Fisher's Information has been associated with the
asymptotic performance of estimators and detectors before.
Capon [1] has related it to the efficacy of the locally optimum
detector (see Appendix 3.1). 1Ingram [2] related Fisher's
Information to the improvement (measured as an increase in the
signal-to-noise ratio) obtained with using the locally optimum
detector rather than the linear detector. Huber [3] related
Fisher's Information to the asymptotic variance of estimators
in his work on robust estimation. He concluded that the most
robust M-estimate over a given class of densities is the
maximum likelihood estimate for the density which minimizes L
Fislier's Information. El-Sawy and Vandelinde [4] applied =
Huber's results to detection problems. Their M-detectors
utilize Huber's M-estimates to form the test statistic.

The results presented here are different. Fisher's =8,
Information is related directly to the asymptotic probability
of detection for both optimum and locally optimum detectors.

It forms part of a generalized signal-to-noise power ratio and =9
can be thought of as a measure of the difficulty of detecting a

signal in a given noise.

Consider the problem which was first presented in Eq. (1.1), . @

. H: X; = n;
! 6 > 0' i=l'aco,N (301)

x
»
-
[

= nj + 8sj

o o
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As before, the known signals {esi}T obey 0 < my < lsi[ <My <=,
The noise samples {ni}T are realizations of the independent random

variables {Ni}§ with densites f; € F, a class of symmetric
densites which will be defined below. The Neyman-Pearson
optimum detector is given by Eg. (1.5) and the locally optimum
detector is given by Eq. (1.9).

The performance of these detectors is usually measured by
the power function B(8) = ProbK(decide K), and by the level
o = ProbH(decide K). For a fixed level «, the Neyman-Pearson
optimum detector maximizes the power function B(6), while the
locally optimum detector maximizes the slope of the power function
E%[B*O) . The level o is fixed by the
appropriate choice of the threshold T. In order to calculate the

near the origin ( d

power function, the probability distribution function of the test
statistic [Topt(i) of Eq. (1.5) or Tloc(l) of Eq. (1.9)] is
required under both H and K. This is difficult to obtain in
general since an N-fold convolution of the densities {fi}ﬁ

is required. However, a few special cases have been solved. The
performance of the linear detector in Gaussian noise is well known
and the amplifier-~limiter operating in Laplace noise has also been
studied recently [5].

In detecting a small signal using a large number of
observations, it is usually possible to use the Central Limit
Theorem to show that the test statistic is asympotically normally
distributed. One simple form of the Central Limit Theorem [6]

states




B
-76~ o
Let tyre--sty be a series of independent random j
¥
variables having arbitrary distributions, means o
Hyeee+s My and variances o2,,...,0°2 o
1 N 1 N 4
respectively. Let
N N .
T t., - u, )
= A1 : i=1 - n=1 N ;1
yn N 21 ’ o0 ey 4
If 02i < @ for all i and if there exists positive constants i
m and M such that o?i > m and E{Iti-uil3} < M for L
all i, then the distribution of y approaches in the limit the 4
unit normal distribution. (In the special case where the

{t. }l are identically distributed, the condition ozi < @
for all i is sufficient.)
Using this theorem, it is straightforward to show that

N
T 151“1K
gpe)y -1 -2¢

(N S\172 (3.2)
Lo,
i=1 K >

and

N
T- I u
i=1

N , 1/2 (3.3)
( T o,
i=

iR

o+ 1-29

1 iH

provided that the conditions on ¥ and o?, are met under

i
.9 both H and K. These three conditions are used to define the
class of densities F for which the results of this section
hold. The symbol -+ signifies equality in the limit as N

approaches infinity and & approaches zero. The symbol &(-*)

represents the unit normal cumulative distribution function.
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Also, ik EK[gi(xi)J and ¢ iK VarK[gi(xi)]. Similarly,

»a Hig and oziH are the corresponding means and variances o
8 under H. For the Neyman-Pearson optimum detector g.(x.) = g (x;)

- 1 1 Opti 1

. and for the locally optimum detector gi(xi) = gloc.(xi) [as defined

b. l - ~

First consider the Neyman-Pearson optimum detector

N
T +(x) = I log

£f.(x.=-8s.) > T decide K
. 1l 1 1 { (3.4) @
i=1 £, (xy)

< T decide H

Assume that the f; have infinite support with derivatives of all
order on (-~=,») and that fi(m) = fi(-m) = fi‘(m) = fi'(-m) =0
for all i. 1In order to calculate the power function using the

Gaussian approximation provided by the Central Limit Theorem, -9

the mean and variance of the single sample test statistic must

be calculated.

f-(x--es-) -@-
ig = EH[gopt. (x,) ] = By, | log 2 (3.5)
E i £.(x,)
i7i
; Expanding in a Taylor series about 6=0 yields °
F.. 2w
4 uiH = - % ezsizI(fi) + B4Kl(e,5irfi) (3'6)
!
[ where
@ 5 @ _
i WEIRNEY
I(f,) = —_— £.(x) dx (3.7)
. 1 hb Y
] £.(x)
i -® 1
o . . =@ 4
F 1s Fisher's measure of information for the location parameter in oo
: the density fi(-), and Kl(e'si'fi) is a power series ]

containing the remaining terms of the expansion. Similarly,
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2 -
o 2 . E lo fiifi:ffil -y 2
iH H g iH
£.(x,)
i i
(3.8) o
22 4 .
.4
where K2(9'si’fi) contains the remaining terms of the 1
)
series. Since f.(¢) is assumed symmetric, it can be shown ®
= - 2 = 2 ; :
[7] that BiK Miy and ¢ iK o g Using the

Gaussian approximation, the threshold is chosen to fix a:

N
i=
a = Prob [T (x)>'1']=1'° 3.9)
H [ "opt'= N ,\1/2 ( )
4oy iH
- N, \l/2 N
T=¢ " (l-a) Z Oin > z Min (3.10)
i=1 i=1

The symbol =~ denotes approximate equality. The power function

is then calculated:

N
T e K
. o) = T]=1-¢ :
8 (2 ProbK[Topt(x) o\ (3.11)
o o
=1 3K
1 N
3 2 T U,
g. _ -1 . i=1 iH
[ I
; i=1 8
'
@
r
| @
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E : In the limit as 6+0 and N+ with k®“ = 6 T s; I(fi) = a nonzero

[ i=1

constant, the power function becomes

B(6) = 1 - ¢(¢ Y(1-a) - k) (3.13)

. 2
provided By and ¢ ig are bounded.

The performance for the locally optimum detector is

calculated similarly.

T)oc(X)

Ne— 2

-fi'(xi) > 7T decide K

(3.14)
i=1 £4(xy) < T decide H

The mean and variance of the single sample test statistic under

H are
-f:'(x;)
BiH = EH ( —1—-—1-— sl> = 0 (3.15)
£i(x5)
- -f;'(x;) 2
. OziH = Ey —_— 5 = s5;2 I(f;) (3.16)
3 £i(x;)
@
The mean under K is
" -£5'(x5) £ (x;)
?. HiK = EK<_—1——1 si> = (-si)[ -—1'——1— fi(xi-esi)dxi (3.17)
o £i(x4) © f£i(x;)
LA- s
L ® 3
L- 4
¥ d
[ ®.
L @ .
B

| " T IO = i - -
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Expanding in a Taylor series about 6 = 0 and simplifying yields

3

2
ik = Os; I(fi) + 6 Jl(e,si.fi)

where Jl(e,si,fi) represents the remaining terms in the

series. The variance under K may be treated similarly

£:'(x;) 2

2 1 1 2

°iK = EK (- ——— sl) - uiK
£i(x;)

ofk = 8% I(fy) + 02 Jp(6,s4,£5)

Using the Gaussian approximation,

N
T= I My
a = Prob, [Tloc(g) > Ti]: 1-0 1=l
N ,\1/2
jop i
-1 N 2 1/2
T=¢ “(l-a)| I s “I(f,)
i=0 + 7
N
T - T uy
B(B) = Pr°bx[Tloc(§’ > T]z 1 -0 i=1
N ,\1/2
121 3K

(3.18)

(3.19)

{3.20)

(3.21)

(3.22)

P S P
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Substituting the appropriate expressions gives E
4 N -
1 8 S
(1-a) k 1;1 L 1(8,8 fi) 'y
B(8) = 1-¢ 0d N 1/2 (3.23) 3
1+ =51 J,(8,s;,f)) o
( x2i=1 i ) .
2 o]
where k° = [ s I(f ). In the limit as ¢+0 and N+= o
i=1
holding k constant, the power function is b
]
1
-l - i
g(e) =1 - ¢(¢ "(1-a) - k) (3.24) @

provided y, iK and cfx are bounded. Note that this equation

for the asymptotic power function for the locally optimum
detector is the same as the equation for the optimum detector
[Eq. (3.13)). This is not surprising since the Neyman-Pearson
optimum detector approaches the normalized locally optimum
detector as N+« and 6-+0.

The expression [Eq. (3.13) or (3.24)] for the asymptotic
power of optimum and locally optimum detectors holds for all
fi € F, where F is a class of symmetric densities with the
following properties:

(1) fi has infinite support with derivatives of all order
on (~=, @)
(2) f£.(=) = £, (-=) = £.'(=) = £, '(==) =0

(3) There exists positive constants m, ani M, such that

(a) 0 < m, < I(fi) < ®
and
fl'(x)
(b) fi(X) dx < M2 < @
o | £5(x)
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Condition (3) is required to satisfy sufficient conditions for

the Central Limit Theorem (Appendix 3.2). 1In the special case o

N
where s; = 1l for all i and the (Ni}l are identically distributed,

N .
PRV TUWUE TUAT Y VO v

that is fi = £ for all i, Condition (3) may be replaced by the

weaker condition:
(3') I(f) ¢« =

The power function [Eq. (3.13) or equivalently Eg. (3.24)]

is plotted in Fig. 3.1 for various values of q, the

PN T DS

N
probability of false alarm. Note that x? = g2 ) sf I(f;) is
i=1

basically a signal-to-noise power ratio since

N
] 62 sf = signal power parameter

and

N -1
[ ) I(£y) ] = noise power parameter

N N

For the special case when | sf/N = 1 and the {n,}, have
i=1

2

common density £, one obtains k© = 62N1(f). Thus, the

larger Fisher's Information is, the larger the generalized

ik St

"r;‘t-

signal~to-noise ratio (kz) will be, and the larger the proba-

-
5
_1
3

bility of detection will become. --9

A

To illustrate the relationships between optimum detector

structure, optimum detector performance, and Fisher's

Information for the special case of s,

i = 1 and fi = f for —iti

all i, two systems of densities will now be considered: a

i ol an S AN AN O MR o SaUNLEL LSS




Ty T T e — "y

ﬁ saAaIn) aamod - T1°¢ *brtyg

(6)8 aamog

-83-

Voeos R b C - ‘ — ) e
At aa) ,V"P,PL DI SRS F UV




generalized Gaussian noise and the Johnson Su System (see

Chapter 11 -~ Section 3 for a description of these density
systems, graphs of their densities and detectors, and plots of
Fisher's Information vs. the system parameters).

The power curves for optimum detectors operating in
generalized Gaussian noise for several values of the parameter c
are given in Fig. 3.2. The power function formula calculated
above only holds for ¢ > 1/2. For c ¢ 1/2 the sufficient

conditions on the Central.Limit Theorem are not satisfied

[Condition (3') is violated]. The curves for small values of c,

corresponding to large values for Fisher's Information (Fig. 2.12)

are higher than those for values of c near 2. The ¢ = 1 curve
is the power function for the sign detector operating in Laplace
noise. The ¢ = 2 curve is for the linear detector in Gaussian
noise. This set of curves illustrates the fact that it is
easier to detect a signal in additive noise which has a large
value for Fisher's Information than it is to detect a signal in
noise with smaller values for Fisher's Information. One could
consider Gaussian noise to be the most difficult noise
environment in which to detect signals since Gaussian noife has
minimum Fisher's Information among all fixed variance
distributions and thus has a maximum value for the noise power
parameter among all densiti2s of a given r.m.s. noise power.
Fig. 3.3 displays the power curves for optimum detectors
operating in noise from the Johnson Su System. Small values
of &, corresponding to large values for Fisher's Information
(Fig. 2.16), yield higher curves than large values of §. As
é increases, the curves rapidly approach the power curve for

the linear detector in Gaussian noise.
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All three of these graphs serve to illustrate the fact that
Fisher's Information can be used as a measure of the difficulty
of detecting an additive signal in noise. Non-Gaussian noise,
with large values for Fisher's Information, increases k2 thus
providing higher power at a given level than is possible for the
Gaussian distribution. Impulsive noise, with its characteristic
heavy tails, has a high value for Fisher's Information. The
optimum detector for this noise will perform far better than the
linear detector would in Gaussian noise. This is reasonable
since limiters or blankers can be used to suppress the heavy
tails which in effect will decrease the noise power without
decreasing the signal power. HHence, the increased structure of
non-Gaussian noise, if properly considered, can be a great
asset. Simulation results are presented in Chapter IV which
support these statements.

Although the expression for the asymptotic power function
was derived assuming independent observations, the Central Limit
Theorem holds under the weaker condition of strong mixing [8].
The expression will then still be valid; however, the detector
in question will no longer be optimum and also the value for k
will change since the dependency structure will introduce cross
2

. . 2
terms in the computation of SiH and ok

Section 2: The Relationship Between Efficacy and the Asymptotic

Performance of Nonlinear Detectors

In Section 1 it has been shown that optimum detectors for

densities with high values for Fisher's Information will perform

P e esieendimaniing e dinedomunio P o ety Ao PR S
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better than optimum detectors for densities with low values for

Fisher's Information. Therefore, Fisher's Information can be
used to rank the densities within a class of densities to
determine which density provides the worst environment for
detection. However, in order to prove that the pair (fo,Do)
is a saddlepoint (fo minimizes Fisher's Information over the
class and D is the locally optimum detector for f_ ), the
results of Section 1 must be generalized to account for all
nonlinear detectors.

Consider a special case of the problem treated in Section 1

of this chapter.

H: xj = nj
e >0, i=1l,...,N {3.25)
K: %y = ny + 6
The known signal 6 is assumed constant. The {ni}§ are
assumed to be realizations of the independent and identically
distributed random variables {Ni}§. The noise is
distributed according to £, where f ¢ F a class of zero mean
symmetric densities having finite Fisher's Information.
The canonical nonlinear detector for this problem can be

written

T(x) = (3.26)

> T decide K
glxy)

"2

i=1 < T decide H

where g(*) is a memoryless nonlinearity. The threshold T is
chosen to achieve the desired probability of false alarm.

Through the proper selection of the nonlinearity, *his equation

123
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; can represent both the optimum and locally optimum detectors for
the problem given by Eq. (3.25). Note that this detector is -—
both memoryless and non-time-varying. This is because the _;f
signal is constant and the noise samples are assumed to be

independent and identically distributed.

As in Section 1, the Central Limit Theorem can be used to
calculate the asymptotic power function for the detector given

by Eq. (3.26). When the signal is absent, the mean and variance

of the single sample test statistic are

ug = Egla(x)d = [~ g(x)f(x) ax

(3.27)

o2 = Eyle?(0] - 12 = [T P (xE(x) ax - ( [ g(x)E(x) ax)?

When the signal is present,
b = EK[g(x)] = f;g(x)f(x-e) dx (3.28)
By a change of variables in the integrand, this becomes
= -]

g = [.9(x+6)f(x) dx (3.29)

Also,

2 2 2
og = Eglg (x)] = wy
(3.30)
2 o 2 2
og = [ g%(x+e)£(x) ax - ( [ g(x+e8)f(x) dx)
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Using the Gaussian approximation provided by the Central Limit "1
Theorem, the threshold is chosen to fix a: f
—d
' T = Nuy s
a = Proby [T(x) > T]=1 -0 T \172 (3.31) B
-1 -
¢ (1-0)@011 + NUH (3.32) :.'1
The power function is then: ]
g = Proby ['1‘(5) > T]z 1 - ¢ —K (3.33) i
( 2)1/2 B
No 1
K .3
!
- o g = W
B= 1 - e<¢ 11-a) B - JEL-—H> (3.34)
Og Ok

Now,

Also,

x « 2
o \2 /gz(x)f(x) dx - (/g(x)f(x) dx>
(.ﬂ) s == == — (3.35) ]
%k %2 * =
[9 (x+6) f(x) dx - (fg(x-i-e)f(x) dx) S
-3 - 00 M
3 -]
Eﬁ’ Expanding g(x+6) and gz(x+e) in a Taylor series, it can be 5
f: easily seen that ]
e -4
2 o
. OH ]
1"'“(—) =1 (3.36) =
8+0 \ °k : ]
..
.

u (x+e)f(x) dx - /g(x)f(x) dx
H e

Y P

T __K :
m OK x 172 (3.37) -.j
g (x+e)f(x) dx - ( g(x+8) f(x) dAx =3
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In the limit as ¢ -+ 0 and N + =« holding W o = ko = a constant,

¥
—— * N 8 /E (D) (3.38)

K

u
NS K

where

® 2
L[ruum)u]
E = Lo J
9(f) ®q M 2 (3.39)
/9 (x) £f(x) dx - g(x)f(x) dx

is the efficacy of the nonlinear detector (see Appendix 3.3).

The asymptotic power function can now be written as
B=1- ¢(¢"1(1-a) - VN © VETE ) (3.40)

Efficacy thus has a monotone relationship with the asymptotic
performance of nonlinear detectors. High values for efficacy
correspond to higher power at a given signal strength than do
low values. Note that for g(x) = -f'(x)/f(x) (the locally
optimum detector), one finds Eg(f) = J(f) (Fisher's Informa-
tion), and Eq. (3.40) reduces to the result from Section 1

[Eq. (3.24)].

Section 3: The Saddlepoint for the Minimax Problem

The results of Section 2 may be used to prove that the pair

(fo,Do). where fo minimizes Fisher's Information over the

e i P it [ Gy WAy Y el s P SN PR

& .
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: given class of densities and Do is the locally optimum

E; detector for density fo’ is a saddlepoint for the minimax

k‘ detection problem preyviously described. Let f be contained in f;“

:i: F, a convex set of densities, and let g be any antisymmetric - E

Ei; detector nonlinearity. Also let 9 be the locally optimum E
nonlinearity for density £ (i.e. go(x) = -fo'(x)/fo(x))- i;;

If fo and 95 satisfy

Eg(fo) ¢« E

go(fo) < E_ (f) (3.41)

9o

for all £ ¢ F and all g antisymmetric, then (fo.Do) is a
saddlepoint. That is, any g other than 9 will decrease the
efficacy (and thus the power function) when £, is the noise.
Also, any other noise f will increase the efficacy when g is
used for detection. Thus £, is the "worst density" and 9 is
the best detector for this density. This is the minimax solution.
The detector is chosen for minimum error using the density which
maximizes error. This problem is related to the minimax estimation
problem of [9].

The proof of Eq. (3.41) is similar to one used by Huber [10]
in his work on robust estimation. His equation for the asymptotic
variance of an M-estimate is similar to the equation for efficacy.

For g(x) antisymmetric, efficacy can be written

bt 2
l;/;'(x)f(x) dx:l-
Eg(f) =

g2 (x) £(x) dx (3.42)

-

The relationship Eg(fo) £ Ego

that the nonlinear detector which maximizes efficacy is the locally

(fo) follows from the fact

. - P ) s \
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optimum detector [11]. To prove E (£°) < E_(f), first

% 9%

note that Egb(f) is a convex function of f (See Appendix 3.4).

Then let ft = (l-t)fo + tfl where £1 e F. Now,

a
at Ego(ft) >0 (3.43)

t=0

if and only if E

g (f) is increasing in all directions from f£ .

(o)
Which, by the convexity of Eg (f) on the convex set of densities
o
F, means that fo must minimize Eg (f). By a straightforward
(o)
computation,
, \ [(l-t)'[wgo'(x)fo(x) ax + tfg. )£ (x) dx] |
at Ego(ft) = 4t - 5
£=0 a-v)f g 20t ax + tf g 2waf, ) ax
t=0
zfgo'(x)fo(x) dx
- — = [557 00 [£,00 - £, ] ax
fgo (x) £, (x) ax
(3.44)
® 2
[[go'(x)fo(x) dx] -
o 2
- - 7 [ 8 w0 [£00 - £ 00 ] ax
[f s 2eoe 00 ax] "=
To simplify this expression, note that
- = [e e e rm)?
Jf go'(x)fo(x) dx = (-1) - fo(x) dx
. - £,(x) £, (x)
(3.45)

= I(fo)
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and
P 2x)f_(x) a /m SAY
g x x X = - c— f (x) dx = I(f.)
. o © » fo(x) o o) (3.46)

where I(fo) is Fisher's Information for density f_. Thus,

' 2 -
& Ego(ft) -/ [2.90 (x) =~ 9 (x)][fl(x) fo(x)] ax (3.47)
t=0 =

Now this equation is equivalent to the condition necessary for the

minimization of Fisher's Information. That is,

z Bl-t)f Y(x) + tf '(x)] 2
dét I(ft)l = dd-t () 1 dx
t=0 @ (l‘t)fo(X) + tfl (x) t=0

(3.48)
= -2/ qo(x) [ fl'(x) - fo'(x)]dx -/ goz(x) [fl(x) - fo(x)] dx

Integrating the first integral by parts leaves

= jlzgo'(X) - goz(x)] [fl(x) - fo(X)] dx (3.49)
t=0 -

d‘lt 1(£,)

PP LI R S S SR L S S W Sy S Var Y PP U AT TP e e il ool sl PSP ool e BcsioiolscosseedBosiintcioss
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e by od

o So I(f) will be minimized at £ = f, if and only if Eq. (3.49) is

ﬂi nonnegative. Thus, Eg (£) is minimized at f° if and only if
e o

I(f) is minimized at £, which occurs if and only if ];j
@ (e o 2 _ o
[o029,"(x) = gZ(x)1[£,(x) - £ (x)] dx > 0 (3.50) ..
—
'®
for all £, e¢ F. Therefore, Ego(fo) g Ego(f) when f_ minimizes
{ Fisher's Information over the class F. Eq. (3.41) holds and the
1 i ,D_) i int. - 4
L‘I pair (fo o) is a saddlepoint S
k'\'t. 4
L ]
(-
L"~
x Section 4: Minimax Detectors - Some Examples ~
['e L
- Sections 1, 2, and 3 have established the fact that given a
- SR
%ii convex set of densities F, the minimax detector for F is the a;ﬁ
-
locally optimum detector Do for the density fo which minimizes B
p Fisher's Information over the class. Since I(f) = E(_f./f)(f) is ﬁi
4
b .
!il a convex function in f (see Appendix 3.4) there exists a density
i with minimum Fisher's Information. Huber [3] has shown that this ?

density is also unique. 1In this section several different classes

P )

of densities are considered and conditions are established for the

et
Y}

?,i minimax detectors.
)

First M Moments Fixed

Consider the class consisting of all densities which have the

-—-,rvf—'ﬂ'.'. DA a0
D e .

values {um}¥ for the first M moments. That is, a density

£(x) in this class must satisfy

e
{
4
J
)
R
Ly
S
1
o
R |
.
.,

1
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[oxP£(x) ax = u, m=0,1,2,...,M (3.51)

where Ho = l. The density with minimum Fisher's Information in

bi this class cay be found using the Euler-Lagrange equation
o -
: 5F - &<§—If‘.>= 0 (3.52)
with 9 "
]
L(x,f,£') = (f—‘-ﬂ ) £x) + I A x"£(x)
£ (x) m=0
A straightforward calculation yields the following second order =
nonlinear differential equation 1.5
: 2 ; M
<__—f () > e (3.53) 1
£ (x) f(x) m=0 S
j-i
The density which satisfies Eq. (3.53) and the constraints given “;
o by Eq. (3.51) is the density with minimum Fisher's Information. QiF
? The locally optimum detector for this density is the asymptotic -ii
2 minimax detector for the class. G
re -
t As an example, consider the case M = 2 with M = 0 and
i My = 02 ({i.e., all densities with fixed variance 02).
: Eq. (3.53) becomes ;
re 0.
L e
::" £'(x) 2 £" (x) 2 .
. _— -2 =—— 4+ Ao + Azx = 0 (3.549)
o’ £(x) f(x) S
1 @ @~
! .
1 @ .
i
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with the constraints
J_of(x) ax = 1
j_:xzf(x) dx = o2

These equations are satisfied by the Gaussian distribution. The
linear detector is the minimax detector for the class. It
guarantees the lower bound of 1/0? for the efficacy. The
following table displays the efficacy for both the linear detector

and the locally optimum detector for some noise fl.

Efficacy

Gaussian noise (g?=1) non-Gaussian noise f; (o?=1)
linear 1l 1
detector
locally
optimum some €1 I(f;) 21
detector amount
(-£1°'/£;)

Use of the linear detector guarantees an efficacy of unity. 1If
another detector is used, the efficacy for Gaussian noise will be
less than unity. However, when the noise f1 for which the
detector was designed is present, the efficacy will be given by
Fisher's Information (see Section 2) and could be much greater
than unity. If one either has some prior knowledge of the noise

or is willing to accept a decreased performance for Gaussian

noise then one could do far better than the linear detector, even
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.
though it is the most robust (in the minimax sense) for this B
class. A conclusion which can be drawn is that this class of M;
—
fixed moment densities may not be very realistic. ’;
A Class of Mixtures o
S
‘!.4
Perhaps a more useful class of densites is given by the o
mixture ;
- 4
‘® |
f(x) = (1 - e)g(x) + eh(x) , 0 < e <1 (3.55) ,%
]
where g(x) is some known symmetric density (with -log g(x) ;64
convex) and h(x) is an unknown contaminant which is assumed ';
symmetric. Huber [3] has shown that the density f_(x) with i
minimum Fisher's Information in this class is given by (“:
=
(1 - ¢)g(x) LIxX1 € a
fo(x) = (3.56)
(1 - c)g(a)e'kox"a) ,Ixt > a
where [-a,a] is an integval such that Ig'(x)/g(x)I < k and
a
[g(x) ax + 222 . - 1 (3.57)
k - €

a

A proof of this result is given in Appendix 3.5. When g(x) is

the Gaussian distribution, the locally optimum detector for

F density fo(x) is an amplifier limiter. It's performance has

o

;; been studied by Martin and Schwartz [12]. Kassam and Thomas [13]

X

3 =

: .

4 0
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have studied the various limiters which arise when g(x) is a
member of the generalized Gaussian distribution defined in

“E Chapter III - Section 3. o

Other Possibilities

Huber [14] has developed a technique to determine the

that there is a unique function which has a minimum value for

X distribution with minimum Fisher's Information which will fit a -]
E‘ set of measured points. Given k 2 2 points, Huber has found ‘@
i S
|
!
l

Fisher's Information among all distributions which pass through
the points. This function can be obtained by spline interpola-

tion. Let F(§;) = t

j» 1 = 1,00,k be the k points. Assume that

EO = -, to = 0 and 5k+1 = o, tk+1 = 1. Then the distribution

Fo(x) with minimum Fisher's Information which passes through
these points must satisfy the following four conditions:
= . 1 = e e o, +

(2) F, is two times continuously differentiable

(3) fo(x) = Fo'(x) > 0 except over intervals

[51'51+1] where t. = t . .,

(in such cases Fo'(x) = 0)

(4) On each interval (J?; )"/Jf; = ), = a constant

Also, the value for Fisher's Information will be

i

A

- K o
q I(f5) = =4 [ (tj4) - ti)hg (3.58) o
b i=0 L
;o @
L M .
S

- -
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This result could be very useful for detection systems.
Initially measurements would be made and the density which
satisfies conditions (1) through (4) would be found. The optimum
detector for this density should perform well for the actual
noise.

Two other classes of densities in which the member with
minimum Fisher's Information has been found are: The p-point
class and Huber's e-normal class. The p-point class [4] is
defined as the set of all symmetric distributions which are
continuous at * a and which satisfy L: f(x) dx = p for some
fixed a and p. Huber's e-rormal class [3,10] is the set of all
distributions which differ by at most ¢ in Kolmogorov distance
from the standard normal cummulative distribution function:
siplF(x) - ¢(x)! & e« Both of these classes may be used

for minimax detection.
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L 2
Appendix 3.1
‘o
The Relationship between the Efficacy of the Locally Optimum
Detector and Fisher's Information
.Z. ‘
The efficacy of a detector is given by Eg. (1.15) as, _
3 2
[ E. [T(x)] | ¢]
Ep = lim 138 7K g+0
N+ N Var  (T(x)) BN
H = ‘@
t K
For the locally optimum detector T(x) = [ ——— s,

. i
i=1 fi(xi)

From Egs. (3.16) and (3.18),

N N 2 3 N
NS N
VarH T(x)] = iiloiH = 1ilsi I(fi)
Thus,
1 N
Ejoc = ;ﬁﬂ N iilsi I(£;)

N
For the special case of % I si2= l and fi=f for all i,

= I(f)
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. Appendix 3.2 1

Satisfying the Sufficient Conditions for the Central Limit Theorem -;4
For the Central Limit Theorem to hold, it is sufficient that: )
(1) 02 < = _
‘o]
2
(2) o, >m> 0

(3) Eflgi(xi)-uil3} <M< w®

..1

1

for all i, under both H and K. In the special case of fi-f and é
sisl for all i, Condition (1) alone is sufficient.

First consider the Neyman-Pearson detector. ?.i

: n

2 _ 2 2_ 2 4 ]

Oin Oik * 8 5; I(fi) + 8 xz(e'si'fi) - ﬂ

-

For sufficiently small 6, Condition (1) is satisfied by requiring :‘j

-y

|s;|< = and I(f,)< =. Condition (2) is met if lsil >m, > 0 and

I(fi) >m, > 0. Utilizing a Taylor series, Condition (3) can be

simplified
£.(x.-8s.) 3 £.(x.,-8s.) 3 3
E llog_i_l'._l-uil fs E’llog—;—-—l—l—l +|ui|
g s 3 |Eix)?
€ 878y ./' =4 £, (x,) dx; + {higher order terms)
- - | £5(x;)
1 ,
e Thus, for sufficiently small 6, condition (3) can be satisfied, -

under both H and K, by requiring lsil < M) < = and

: :
t w fi(xi) 3 :
¢ == £ (x,) Ax; < M, < ® Y
£, (x.) i1 1 j
- i*7i

b .« e o el e a4 eia s - - - —d el aiondis — Meeeso oot s PO DU PR P
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For the locally optimum detector,

and

2

2
Ojg = 85 I(£;)

2 2 2

L acE A N R S e A s S A S T T T B N

For sufficiently small 6, Conditions (1) and (2) can be satisfied

by requiring 0 < m; < Isil <®and 0 <m, < I(f;) <« just as in

the Neyman-Pearson case.

both H and K can be writteh

|
fi(xi)

< Isil3 jr

i i

fi(xi) 3

1

fi(xi)

[}
fi(xi)

fi(xi)

3
f + luyl

The left hand side of Condition (3) under

3

£, (xy) dx; + {higher order terms’

Thus, Condition (3) can be satisfied if |si| < M; <« and

[

4 e la elala LA - PR SAY W

3

]
£.(x.)
i'7i
fi(xi) dxi <M

fi(xi)

2

<

B s umedimcandir,
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Appendix 3.3

The Efficacy of the Nonlinear Detector

The efficacy of a detector is given by Egq. (1.15) as,

2 "y
[a‘%sxtﬂyl ]
E. = lim 6~0 ‘

T
N+ Nvarg [T(x)]

Using the nonlinear detector of Eq. (3.26), P.
N -
T(x) = I g(x;) o
i=1 _
»:;
E fT(x)]) = NE [g(x)] = N_/:g(x+e)f(x) dx .
c% Eg[T(x)] = foa% g (x+€) f(x) dx
6-+0 - 8-+0

NJ/.g'(x)f(x) dx

Also,

var, [T(x)] = NVar, [g(x)]

@ [ ) 2
. N[fgz(x)f(x) dx - (_[g(x)f(x) dx) ]

Thus, for the nonlinear detector,

© 2
[frmum)u]

2 = 2

ﬁ (x)f(x) ax -[fg(x)f(x) dx]

For the special case g = - £;i51, Eg(f) = I(£f) as in Appendix 3.1.
£(x)

e e e .
|!. A 7
PP RPN P S ] st

E

T = Eg(f) =

JAEAA_A S o i
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Appendix 3.4

A Proof that Efficacy is a Convex Function
of £ when g is Antisymmetric

Efficacy, for g(x) antisymmetric, is given by Eq. (3.42) as,

2
[/g'(x)f(x) dx]

E (f) =
g 2
f; (x) £(x) dx
Let B
v(f) =./rg'(x)f(x) dx
and -

V(£) =f g (x) £(x) ax

-0

Note that U"(f) = V"(f) = 0 and V(£f) > 0 for all but degenerate

cases. Thus,

2
ES(£) = W(E) = [unl®

V(f)

is a convex function of £ because

' - V]2
wW"(f) = 2[U VTWJ 2 0
v

In particular I(f) = E f.(f) is convex because the locally optimum

detector is antisymmetrfe.

R et Py Py A a -~ N N
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Appendix 3.5

A Proof that £ _(x) of Eq. (3.56) Minimizes Fisher's
Information for tBe Mixture Class Specified by Eg. (3.55)

This proof is similar to one given by Huber [10]. First fo(x)
is proven to belong to the mixture class. Then it is proven that
fo(x) minimizes Fisher's Information over the class. From

Egs. (3.56) and (3.57)

(1 - e€)g(x) x| € a
fo(x) =

-k(lxl-a)'|

(1 - e)g(a)e x| > a

' (x)

alx < k and

where [-a,a)l is an interval such that

a
2g(a) . _ 1
[ag(x) dx + =2 =5

The class is defined as all densities of the form

£(x) = (1 - €)g(x) + eh(x)
where g(x) and h(x) are symmetric densities, 0 € ¢ € 1, and -log g(x)

is convex. The density fo(x) is an element of the class if

1 (1L - ¢)

hy(x) = & £,(x) = € g 0x)
0 o|x| s a
{ (1 ; ) g(a)e-k(lxl-a) - (l_E—E) g(x) ,|x! > a

TS . - B N o
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is a density. To show ho(x) 2 0, note that since -log g(x) is

convex, it lies above its tangents at :a.

-log g(x) > -log g(a) + (- —gj'g‘ar’>u -a) ,x>a

=log g(x) > -log g(-a) +<- M) (x + a) ,x < =-a
g(-a)

Also, =~ g%é%l k and - g%ég%l = «~k. 8o that,

-log g(x) > -log g(a) + k(|x| - a)
Thus,

=k (|x]|-a)

g(x) < g(a)e v |x] > a

and

(1 - ¢€)
€

-k(|x|-a) _ (1 - ¢)

gla)e =

Hence ho(x) » 0. Also,

fho(x) dx &;_":) g(a) e-k(IX|'a) dx - .(l_zi)_/ g(x) dx

|x|>a [x|>a

a

= (1 =€) 2 _ (1 -¢) -
== g(a) § S [l fg(x) dx]
-a

a
l -
= 1= ) [zgl‘f) +jg(x) dx] - 48

-a

m

(1 - ¢€) = 1

=1
3 €

Thus ho(x) is a density and fo(x) is contained in the mixture class

of interest.
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From Eg. (3.50), fo(x) minimizes Fisher's Information if and

only if

J = Jf (29, (x) - goz(x)l (£, (x) =~ £,(x)] dx > 0

for all fl(x) in the class. Now,

-fman lxlce

go(x) =
k sgn(x) x| > a
g' (%) \
<’ g(x) ) x| < a
95" (x) =
0 x| > a

~log g(x) convex 9(- 37';"5‘—) ) >0 = go'(x) > 0

-

g%é%lj < k for |x| € a. Thus, k2 - goz(x) 3 0 and
2

Also,

Zgo'(x) - 9 (x) + k
2

> 0 for |x| < a. For |x| > a, g,'(x) =0

2

and goz(x) = k“; thus Zgo'(x) - goz(x) + k“ = 0. Then, adding

and subtracting kz from inside the integrand

a ®

3 =f [2g," (x) = g,2(x) + k2] I£; (x) = £, (x))dx - ky £, (x) - £ (x)]dx
-a - D

For |x| « a, f;(x) - f,(x) = eh;(x) > 0. Also, the second

integral equals zero. Thus J > 0 and fo(x) minimizes Fisher's

Information over the entire class.
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Chapter 1V

AN ADAPTIVE DETECTOR FOR SIGNALS IN NON-GAUSSIAN NOISE

Adaptive detectors are often used when near optimum
performance is required for a wide variety of noise
environments. They are often more complex than non-adaptive
detectors: however, they are inherently capable of handling
noise whose statistics are unknown or time-varying. In this
chapter an adaptive detector is presented and simulation
results are given which indicate that this detector will
perform well for several different background noises. Section 1
starts with a description of the detector. Different measures
of density function tail behavior are then explored to determine
an algorithm which may be used to adapt the detector. 1In order
to test the detector's performance, it is implemented on a
digital computer. Section 2 presents the results of this

simulation.

Section 1: Development of an Adaptive Detector using the

Johnson System ags a Noise Model

Figure 4.1 displays the basic structure for an adaptive

detector which can be used for the hypothesis testing problem
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described in Chapter 1. Information is extracted from the
observations in order to select a nonlinearity to be used for
the detection. If one has a reasonable model for the noise,
with perhaps a few unknown parameters, the selection of the
nonlinearity becomes less difficult. The parameters may be
estimated from the observations to determine the density
function within the model which most closely approximates the
noise. The optimum nonlinearity for this density should be
Close to optimum for the actual noise.

The Johnson S, System, presented in Chapter II - Section 3,
provides a useful noise model. It was chosen because it is a
relatively simple parameterized family of densities which
possesses noise blankers for the optimum detector nonlinearities
(see Fig. 2.15 and Appendix 2.2). These nonlinearities are
nearly linear about the origin. However, large observations are
heavily suppressed. The Johnson System for zero mean symmetric
distributions [Eg. (2.35)] can be described by two parameters,

é§ and A. The shape parameter & is directly related to the
tails of the density. The scale parameter A can be related to

the variance ¢? by the following equation

172

il by
o2/8% _

In order to use the Johnson System nonlinearities, an adaptive

detector must estimate the parameters ¢ and A. Given

estimates of 6 and 0%, A can easily be estimated using Eq. (4.1).
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F« The shape parameter & can be estimated by utilizing its fl}
"-
o relationship to tail behavior. Three measures of density Iff
-
Eﬂ function tail behavior will now be described in order to o |
;- facilitate the selection of the appropriate measure for the ;ff
- estimation of §. —
b .‘70'1
t Measures of Density Function Tail Behavior a
- B
E" '
| It is desirable that a measure of tail behavior be :.'h
independent of location, be independent of scale, and exist for R
3
all distributions. The most common measure of tail behavior, .
the standardized fourth central moment defined by ;.é.
T
3
E(x - w4 -3
g2 = wher> y = E(x) (4.2) SRS
[E(x - p)?%3° S
‘.c-l
e
possesses the first two of these properties. However, any ]
simple function of moments cannot exist for all distributions.
. . . 1
This leads to the use of functions of percentage points as a @4
measure of tail behavior. One such measure [l] is B
LY
Y
e
R(p;) .;ﬁ
1 -
T = (4o 3) 1
R(p2) :
1
where R(p) = F-l(p), 0 ¢<p <1, and F(+) is the o
cumulative distribution function. The percentage points P, -
and p, are chosen on the tail and on the shoulder of the
density, respectively. That is, the point P, is selected so
o b

that the P, quantile, x, = R(pl), increases monotonically

1
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as the tail becomes heavier. The point P, is chosen so that
the p, quantile, x, = R(p,), remains relatively stationary
regardless of tail behavior. The measure T exists for all

reasonable distributions and is independent of both location and

scale.

Another useful measure of tail behavior [1l] is

R'(p;)
[ (4.4)
R(p;)
where p, is chosen on the tail of the density. This p
possesses many of the same properties as does <T. Its major
advantage over 1 is that the point on the shoulder of the
density, which may be difficult to choose, is not necessary.
The points P, and p, are chosen on the tail anhd on the

shoulder of the Johnson density system. The inverse of the

cumulative distribution function for the Johnson System is

-1
x = F-1(p) = Asinh (-9—-‘21—) (4.5)
5

where ¢-l(-) is the inverse of the unit Gaussian cumulative
distribution function. Figure 4.2 displays x versus p for
several values of the parameter § (A is selected by Eg. (4.1)
so that o0? remains constant . For values of p > .995, as §
decreases so that the tail becomes heavier, the gquantile x
increases. The larger p is, the easier it becomes to

differentiate between the different values of & For this
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reason and to account for detectors operating at a low false
alarm rate, the point pP; = .9999999 was chosen. 1In order to
choose p, on the shoulder of the system, note that for values
of p between approximately .975 and .98 the quantile x is
relatively insensitive to the parameter §. In this study of
.tail behavior the point p, = .98 was selected.

The standardized fourth central moment 82 and the tail
measures T and p for the Johnson System, normalized by their
values for the Gaussian distribution, are displayed in Fig. 4.3.
All three measures increase monotonically as the tails become
heavier (§ decreases). Any one of them could be used to
estimate a value for § given a set of observations. Fig. 4.4
shows the relationships between 1t and 85 and between p
and 82. Assuming the Johnson System model held, one could
measure whichever parameter was easiest and then calculate the
remaining.

Due to the importance of Fisher's Information in estimation
and detection problems (see Chapter 11I), the relationships
between Fisher's Information and the various tail measures were
explored. Fig. 4.5 displays o’I(f) versus B,, T and p
(normalized). Given a value for either B, T, or p and
assuming that the Johnson System noise model is a good
approximation to the actual noise environment, one could obtain
a unique value for Fisher's Information from Fig. 4.5. This
procedure would probably be easier than estimating Fisher's
Information directly for an unknown noise distribution.

The usefulness of these three tail measures for a different

noise model, the generalized Gaussian noise model presented in
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Chapter II - Section 3, was also considered. Fig. 4.6 shows

82, 1 and p versus the density system parameter c. As

for the Johnson System, the three measures increase monoton-
ically as the tail becomes heavier (c decreases). Through these
simple relationships a value for c¢ could easily be estimated by
measuring either B,, T or p. Fig. 4.7 displays the

monotone relationships which enable one to estimate 82, T

and p from each other. A plot of Fisher's Information versus
82, Tt and p is given in Fig. 4.8.

An additional use for these tail measures, which was only
briefly explored, would be as tools for the comparison of noise
models. Various densities, whose tail behavior are identical as
measured by either 82, T or p, could be compared in
terms of, for example, Fisher's Information or efficacy with

various detectors.

Implementation of the Johnson System Adaptive Detector

Any one of the three measures of density function tail
behavior could be used to estimate the Johnson System shape
parameter §. The measure T was selected because it appeared
to be the easiest to estimate from data. One need only measure
two quantiles and take the ratio. The measure B, would
require taking a fourth moment. This would probably be more
difficult in most applications. Although p requires only one
guantile, the rate of increase in the quantile would also have
to be calculated. This could be achieved by measuring a few
points above and below the quantile. This method, however, may

not be very accurate.
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The point p, = . 9999999, selected previously for the
study of the tail measures, can no longer be used. This
quantile is too far out on the tail to be estimated accurately
with reasonable sample sizes. Checking Fig. 4.2 one finds that
the smallest value of p which will still allow one to differen-
tiate accurately between the various values of § is .995.
Consequently, P, = . 995 was chosen. The point p, was
changed from .98 to .975 so that the two points, P, and p,,
would remain an adequate distance apart. Choosing p, = . 995

and p, = .975, one can write 1 for the Johnson System as

sinh(2.5°6/8)

T = (4.6)
sinh(1.960/6)

This equation'is plotted in Fig. 4.9. The curve is similar to
the one in Fig. 4.3.
To estimate § given a set of observations, 1 is first

estimated from the two quantiles

the 99.5% point

T = (4.7)
the 97.5% point

and then § is estimated using Eq. (4.6). To estimate the

scale parameter A, the sample variance is first formed

L (x, - x) (4.8)
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where X is the sample mean. Then, using 6? and the estimate
for §, an estimate for A may be found from Eq. (4.1). Using
these estimates for § and A the Johnson System density which
most closely approximates the noise can be found. The optimum
detector for this density should be close to optimum for the
actual noise.

Fig. 4.10 displays the block diagram for an implementation
of a Johnson System adaptive detector. The detector is of the
same form as that shown in Fig. 4.1. Twenty samples were used
to make each decision. After every 10,000 samples, t and the
noise variance are estimated and new estimates of & and A\
are formed. The appropriate nonlinearity from the Johnson
System is then selected for use on the next 10,000 samples.
Simulatior. studies have been performed with a variety of noise
densities on the input. The results from these studies are
presented in the next section.

A key problem with the adaptive detector of Fig. 4.10 is
that as the input changes and the detector adapts, the
probability of false alarm will change unless the threshold is
adjusted properly. To eliminate this difficulty, a noisy
reference channel was added (Fig. 4.11). The reference channel
is a stream of samples with the same distribution function as
the noise on the actual channel. However, the two channels are
statistically independent. A detector, identical to the one on
the actual channel, is placed on the reference channel. From
its output, an estimate for the probability of false alarm (GQ)
can be found. The threshold can then be adjusted, in both

channels, to attempt to achieve a = 0.1. Also, an estimate
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of the probability of detection (8) can be obtained by
counting the number of correct decisions made when the signal is

present.

-

Section 2: Simulation Results

addadad.

The linear detector, various nonlinear optimum detectors,
and the adaptive detector which was described in Section 1 have '® ]
all been simulated on a digital computer. Various noise i
backgrounds were cor.sidered. All detectors utilized a noisy V?
reference channel to aid in the adjustment of the threshold. 00$
The detectors attempted to maintain a probability of false alarm .‘E
(a) equal to 0.1. The following graphs display estimates of f
the probability of false alarm (a), the probability of 3‘.3
detection (B), and the total probability of error (Pg) for
the various detectors and noise situations. The threshold

levels (T) are also reported. Thirty estimates of these values 1@ 1

are displayed. Each estimate represents 500 decisions made by R
the detector, 20 samples per decision. The first few estimates ‘
E. were taken before the threshold had stabilized. For this

Lf, reason, when averaging these numbers the first ten estimates
should be ignored.

Figs. 4.12 through 4.15 display a, B, Pgp and T for

b . . .
both the optimum and adaptive detectors operating in Gaussian
§

; . . . . . \
[ noise. In this case the optimum detector is just the linear _—
b 1
C s . . . 1
E. detector. Due to the statistical fluctuations of the input, 1t .4
) ,
: 1
1
| @ ] =
1
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is hard to determine precisely the performance of these
detectors. However, it appears that their performances are
nearly the same.

Figs. 4.16 through 4.19 display a, B8, Pp, and T for
the optimum, linear, and adaptive detectors in Laplace or double
exponential noise. The Laplace distribution has heavier tails
than the Gaussian. The optimum detector is the amplifier
limiter. The adaptive detector performs nearly as well as the
optimum detector (see Fig. 4.17 or 4.18). The linear detector
is about 10% worse.

When Johnson noise is on the input of the adaptive
detector, one would expect it to perform especially well. When
it properly estimates the parameters 6§ and A, it will be
using the actual optimum detector. Figs. 4.20 through 4.23 show
that this did occur. The adaptive detector's performance is
nearly identical to that of the optimum detector. Again note
that the linear detector is a rather poor detector for this
heavy tailed density.

A Gaussian-Gaussian mixture (presented in Chapter II -
Section 3) was used to achieve a density with still heavier
tails. One Gaussian distribution, the contaminant, was given a
variance one hundred times larger than that of the background
Gaussian distribution. The contaminant occurred with
probability O.l. The resulting density was normalized to have
variance unity. Figs. 4.24 through 4.26 show the performances
of the optimum, linear and adaptive detectors for this heavy
tailed density. Fig. 4.27 displays the thresholds. One can

easily see that the linear detector does not perform very well.
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Fig. 4.12 - Probability of False Alarm: Gaussian Noise
variance 1, Signal Strength = 0.5
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However, both the optimum detector and the adaptive detector

perform so well it is hard to differentiate between them. For
this reason, this case was repeated with a decreased signal
strength.

Using 0.2 for the signal rather than 0.5, the performances
for these detectors are more readily apparent. Figs. 4.28
through 4.31 display a, B8, PE and T. Note that the scale
on the vertical axis for both Figs. 4.29 and 4.30 have been
changed. The linear detector's performance is now totally
unacceptable. However, the adaptive detector's performance is
close to that of the optimum detector, even with this relatively
small signal.

Fig. 4.32 displays the average value of a, 8 and the
total probability of error. 1In computing this average the first
ten estimates were ignored to allow the threshold to stabilize.
Due to the fact that the estimated value for a did deviate
from 0.1, the estimates of B should not be compared blindly.
The column for total probability of error removes this
variability and is probably the best column for comparison
purposes. In all cases the adaptive detector is found to be
nearly optimum. For the heavier tailed densities it is also

found to perform far better than the linear detector.

A Verification of Some Results from Chapter I1I

The results of Chapter I1I - Section 1 can be used to find
asymptotic values (small signal, lérge numbers of observations)

for the total probability of error for optimum detectors. The
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table in Fig. 4.33 displays the five cases which were

T T, W Ty YT WV ¥

simulated. Adding the value of 0.1 for a to 1 - B from Eq. (3.13) -

A Ad

> |
®

yields the asymptotic probability of error for the optimum ?

g
.
.
.

detector. The final column lists the probability of error
observed from simulations. These numbers are in close
agreement. This verifies both Eq. (3.13) and the accuracy of
the simulation results. Note that the total probability of

error for densities with high values for Fisher's Information is

LI PPy Y

significantly less than for densities with low values for
Fisher's Information. This supports the conclusion from Chapter

I1I that Fisher's Information can serve as a measure of the

B i bhandoa Mo,

difficulty of detecting an additive signal in noise. Figs. 4.34
through 4.42 also serve to illustrate this point.

Fig. 4.34 displays the probability of detection (B8) for
optimum detectors in Gaussian, Laplace, Johnson (¢ = 1), and 9o |
Gaussian-Gaussian mixture noise. Fig. 4.35 displays B for the
adaptive detector and Fig. 4.36 displays B for the linear
detector. For both adaptive and optimum detectors, densities -
with high values for Fisher's Information yield higher power
than densities with low values for Fisher's Information. The
linear detector behaves about the same for all cases. One can @
think of the linear detector as being uniformly poor for all -
non-Gaussian densities.

Figs. 4.37, 4.38 and 4.39 display both a and B for the

optimum, adaptive and linear detectors. These curves are

included to show all of the data plotted to the same scale.
Figs. 4.40, 4.41 and 4.42 display the probability of error for -@

optimum, adaptive, and linear detectors. The same observations
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Fisher's Calculated Asymptotic* Observed”
Information Probability of Error Probability of Erro
1 . 270 . 269
2 .130 .160
2.386 .115 .112
9.02 .100 .102
9.02 .180 .180

* Values reported to 3 significant digits only

4.33 - Comparison of Computed and Observed
Probability of Error for Optimum Detectors
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which were made for the power curves can be made here. Highly
non-Gaussian noise, with high values for Fisher's Information,

can be an asset since the increased structure of the noise can
be utilized to increase detector performance over that possible
with just Gaussian noise. Nonlinear processing, however, is
required to achieve this improvement. The linear detector's
performance remained relatively the same for all densities

studied.

The Performance of the Sign Detector

The sign detector was alsc considered in this simulation

study. The sign detector or hard limiter may be expressed as
N
T(x) = [ sgn(x;)
i=1
where,
+1 » x>0
sgn(x) = 0 , x=0
-1 ,x<0

Figs. 4.43 through 4.46 display a, 8, Pp and the threshold
for the sign detector in both Gaussian and lLaplace noise. As
before, N = 20 samples were used. In both cases, although the
threshold had stabilized near 6, the curves for a and B

cycled between two levels. To understand this, a and B were

calculated numerically.

(4.9)
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®
Under H, when the noise has a symmetric distribution,
sgn(x;) will be -1 with probability 1/2 and +1 with
probability 1/2. Considering the sum of observations as o
binomial trials, the probability distribution for T(x) can be
calculated. It consists of impulses at all even numbers from
-20 to 20 as shown in Fig. 4.47. Summing these impulses it can e
be seen that
a = Proby[T(x) > T] = 0.132 for 4 ¢ T < 6 [
(4.10)
= 0,058 for 6 < T < 8
The oscillations in a are due to the following reasons. Whenever o
4 < T <6, the detector finds a= 0.132. The threshold is *
then raised slightly in an attempt to lower a to 0.1. As soon as
T reaches 6 (6 ¢ T < 8), a falls to approximately 0.058.
Since a = 0.1 is impossible to achieve, the system continues to d
oscillate with T very close to 6. A corresponding oscillation in
B occurs.
As a check, B for Gaussian noise can be calculated easily. .-
For a signal of 1/2, sgn(x;) equals -1 with probability 0.3085
and +1 with probability 0.6915. The distribution of T(x) is given
by Fig. 4.48. For 4 s T <6, B = .746. When 6 < T < 8, @
B8 = .575. These numbers are in close agreement with those
actually observed (Fig. 4.44).
These oscillations are a serious drawback for the sign . @
detector. Probably the best way to eliminate this problem is to
utilize a randomized test. Such tests have not been considered
here since the sign detector is the only detector mentioned above .9
which yields outputs which are discrete random variables.
- @
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t Proby[T(x) = t]
20 9.54 x 10~7
18 1.91 x 10-5
16 1.81 x 10-4
14 1.09 x 10-3
12 4.62 x 10-3
10 1.48 x 10-2
8 3.70 x 10-2
6 7.39 x 1072
4 1.20 x 10-1
2 1.60 x 10°1
0 1.76 x 10°1

FO Y

'
i

Aatotota a4 aa

P

For -2 to -20, Prob[T(x) = ~t] = Prob[T(x) = t]

Fig. 4.47 - Probability Distribution of the Output of the
Sign Detector: Symmetric Noise Density,
No Signal
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t' t PrObK[T(l) = t]
4
[ 20 6.249 x 10~4
18 5.576 x 1073 e
16 2.363 x 10-2 J
14 6.326 x 1072 i
12 1.199 x 1071 . }
@
10 1.712 x 10”1
8 1.910 x 1071
6 1.704 x 1071 »
o
4 1.235 x 101
2 7.349 x 10~2
a 3.606 x 10-2
-
-z 1.463 x 1072 !
-4 4.894 x 1073 !
S
-6 1.344 x 10-3 o
4 |
-8 2.997 x 10-4 f.?
-10 5.349 x 10-5 i
-12 7.457 x 1076 g
o“
-14 7.827 x 10-7 =0
-16 5.820 x 1078 e
-1¢ 2.733 x 1079 o
-20 6.097 x 10-11 0.
Fig. 4.48 - Probability Distribution of the Output of the .
Sign Detector: Gaussian Noise, Signal = 1/2 2@
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;‘ In this dissertation, methods for the detection of known,

Py T

discrete-time signals in impulsive noise have been investi-

A
o'

gated. After a brief introduction to the detection problem in
Chapter I, Chapter II concentrated on impulsive noise. The

characteristics and sources of impulsive noise were considered

i,
.

briefly. Several impulsive noise models were explained. Three

systems of density functions were then presented to provide

first order non-Gaussian noise models which are simple enough .-
to use in detection problems. These three systems are: a :
generalized Gaussian noise, the Johnson Su System, and a
mixture model. Further research is needed in developing .ﬁ

impulsive noise models which are tractable in detection

'
A Sen 2

problems. Middleton's model [1] is probably the most complete

and comprehensive to date. However, it is quite complex and is
unable to model the dependency which has been observed for
impulsive noise samples. Research concentrating on modeling

this dependency structure and on developing higher order

e ) J
_l — At 4-_"_..‘;.;‘;

densities for non-Gaussian noise is needed.

In Chapter II1, the importance of Fisher's Information in

;. assessing the asymptotic performance of detectors has been

@

stressed. It has been shown that an impulsive noise with a
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high value for Fisher's Information provides a better
environment for detection than does a Gaussian noise of equal
power. The increased structure of impulsive noise may be
exploited to increase detector performance over that possible
for Gaussian noise. Nonlinear processing, however, is required
to achieve this improvement. To further illuminate the
relationship between Fisher's Information and detection, it may
be beneficial to explore the connection between Fisher's
Information and entropy. To illustrate this connection,
observe that among all densities of a given variance, the
Gaussian distribution both minimizes Fisher's Information and
maximizes entropy. Further research centered on exploring this
connection and on the effect of these measures on the analysis
of detector performance would be desirable.

The relationship between Fisher's Information and
asymptotic detector performance was utilized in Chapter III for
the design of minimax detectors. The density with minimum
Fisher's Information over a given class of densities is the
worst case density within the class for detection. The optimum
detector for this density is the minimax detector for the
class. Several density classes were defined and conditions for
the minimax detectors were explored. One especially
interesting class is the class of all distributions whose
cumulative distribution functions pass through k given points.
Huber's conditions [2] which define the density that minimizes
Fisher's Information over this class were presented. This
technique appears especially promising for detection purposes.

A possible implementation would require taking data points and

)
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finding the density with minimum Fisher's Information which
passes through the points. Then, the optimum detector for this
density can be used. This detection procedure should be quite
robust.

Minimax techniques can be useful if the class of densities
is properly defined. However, in many cases it may be more
appropriate to find a detector which works well for many
non-Gaussian densities rather than to find the one that works
best for the worst case density. To approach this problem one
could examine the equation for efficacy [Eq. (3.39)] for
various detectors and density systems, the objective being to
find a nonlinearity which yields high values for efficacy for
many different densities. This nonlinearity should then be
tested by simulation to determine how well the performance
predictions based on efficacy carry over to the small sample
case.

In Chapter IV an adaptive detector based on the Johnson
System was presented. Simulation results were displayed which
showed that this detector performs well for several different
densities. However, to truly test this system, actual
impulsive noise data should be used. A variation of this
detector could also be considered. The tail measure p,
rather than T, could be used to estimate the parameter §.

Use of p would require taking only one quantile. Since this
point is on the tail of the density, fewer samples would have
to be saved to find an estimate for the quantile. That is,

when looking for the .995 gquantile only the top 50 out of
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@ L2

10,000 points need be saved: while looking for the .975 .

| quantile (required for estimating 1) requires saving 250 S

. °

_(! points. Fast methods to estimate both the quantiles and the : ;

rate of change of the quantiles [dR(p)/dp where R(p) = F-l(p)] I

are needed. )

As briefly mentioned in Chapter IV, the tail measures '® ;

B, T, and p can be used as tools for the comparison of :

density systems. Different densities, whose tail behavior are }

identical as measured by either 82, T or p, could be compared @ |

)

in terms of Fisher's Information or the performance of various j

detectors. This study could aid in the selection of appropriate i

B

density systems for noise modeling. 0.*1
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